Putting AI on a Diet: TinyML and Efficient Deep Learning

Song Han

Massachusetts Institute of Technology

TinyML and Efficient Deep Learning

- Optimize the <u>Computation Efficiency</u>
 - Inference: MCUNet for IoT Devices [NeurIPS'20, spotlight]
 - Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS'20]
- Optimize the <u>Data Efficiency</u>
 - Differentiable Augmentation for Data-Efficient GAN Training [NeurlPS'20]

TinyML and Efficient Deep Learning

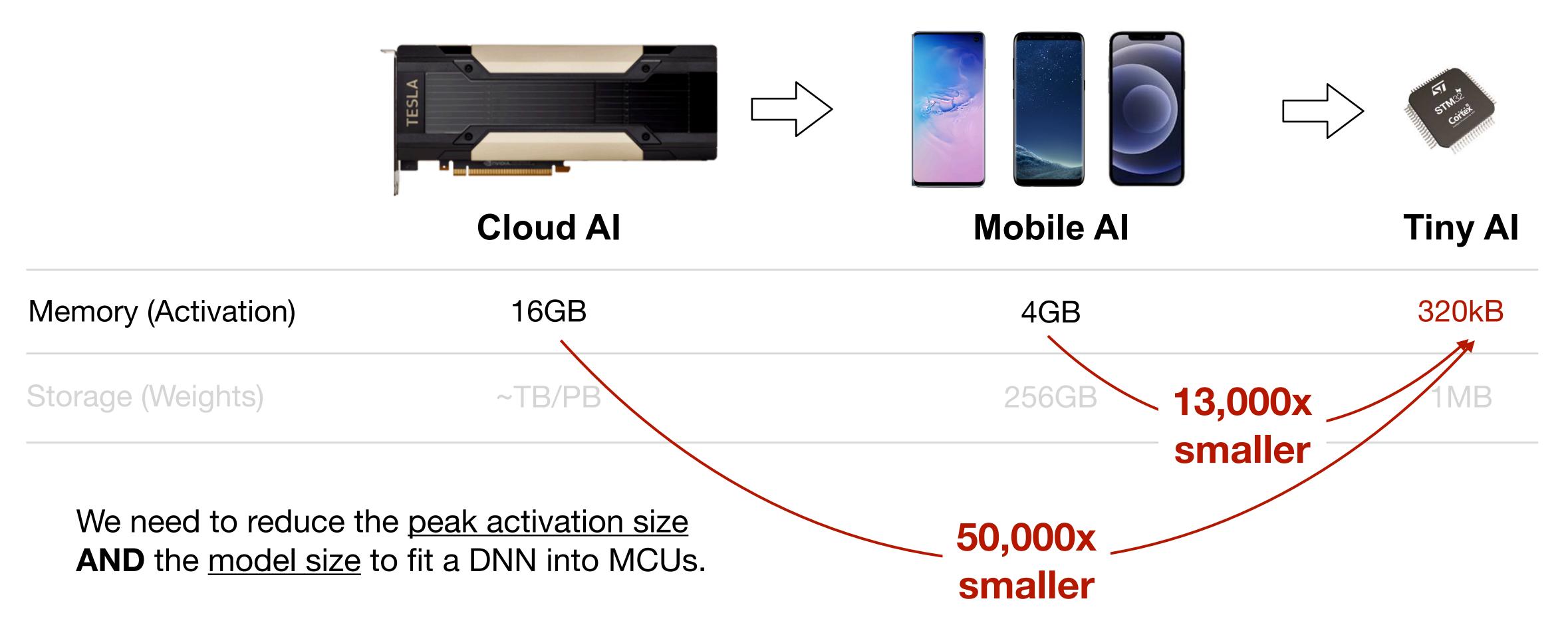
- Optimize the Computation Efficiency
 - Inference: MCUNet for IoT Devices [NeurIPS'20, spotlight]
 - Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS'20]
- Optimize the Data Efficiency
 - Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS'20]

MCUNet: Tiny Deep Learning on IoT Devices

Ji Lin¹ Wei-Ming Chen^{1,2} Yujun Lin¹ John Cohn³ Chuang Gan³ Song Han¹

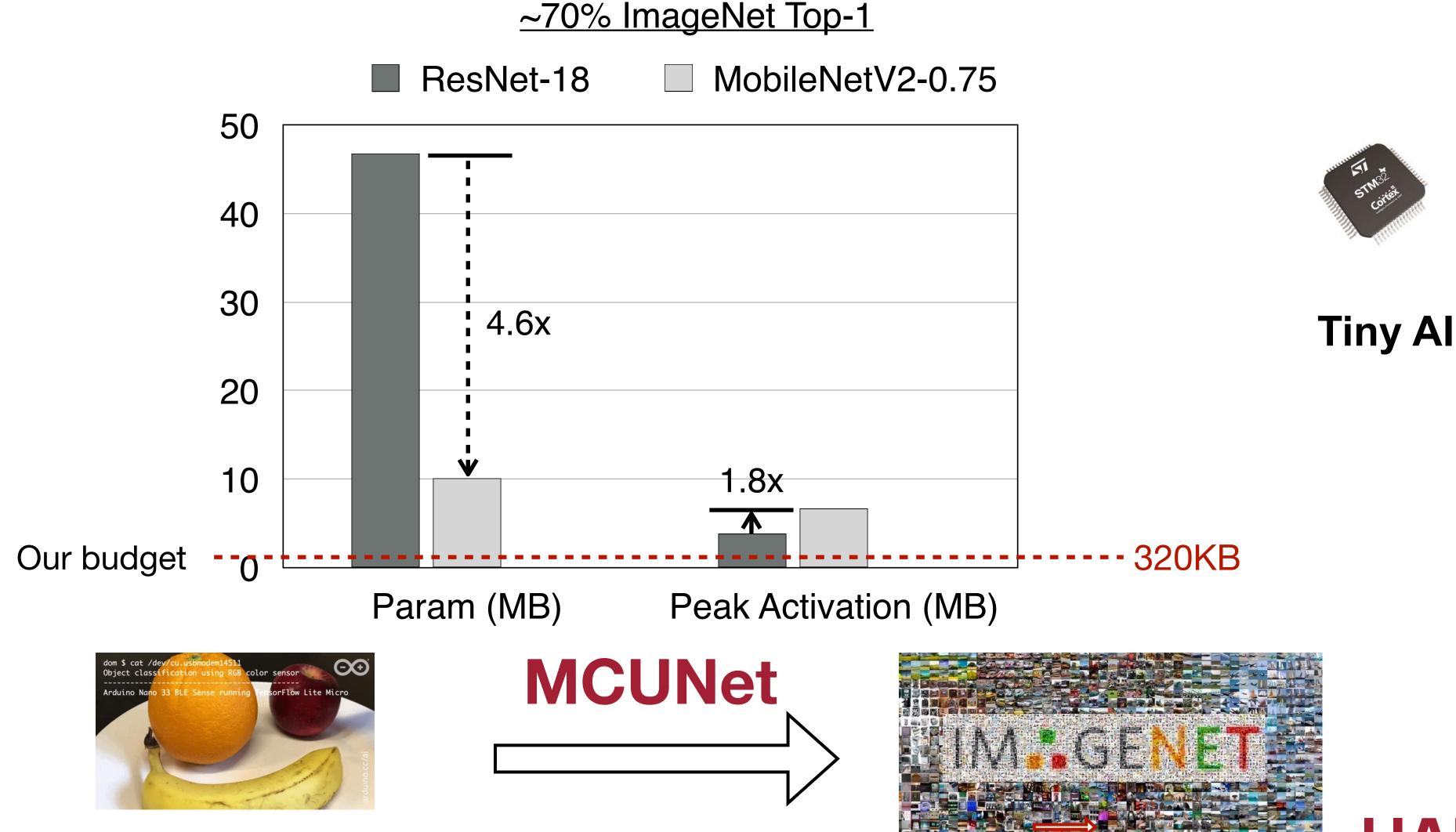
¹MIT ²National Taiwan University ³MIT-IBM Watson AI Lab

Challenge: Memory Too Small to Hold DNN



I-IANI LAI=

Existing efficient network only reduces model size but NOT activation size!

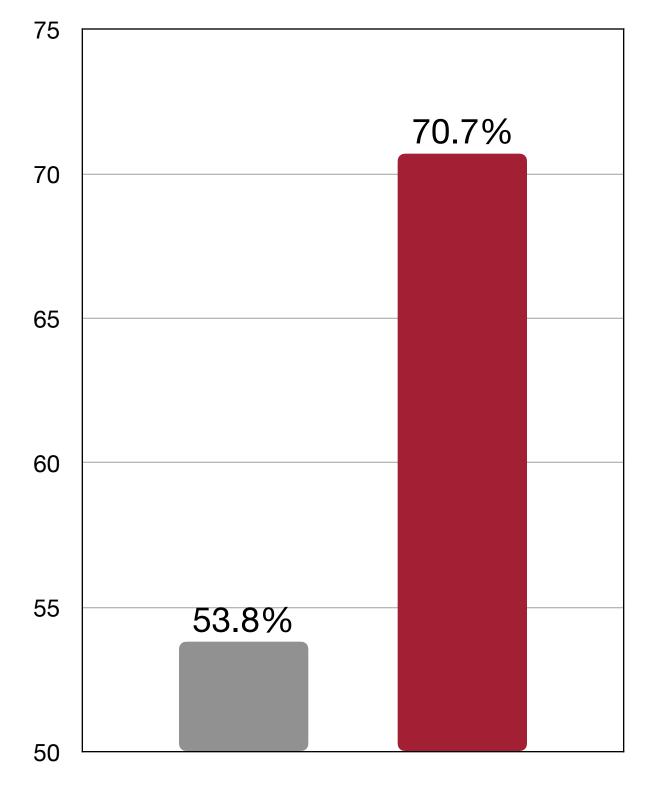


Toy applications

TinyML: Bring Al to loT Devices

Challenging memory resource: 256KB SRAM, 1MB Flash on MCU Key: co-design the neural architecture, the compiler and inference engine

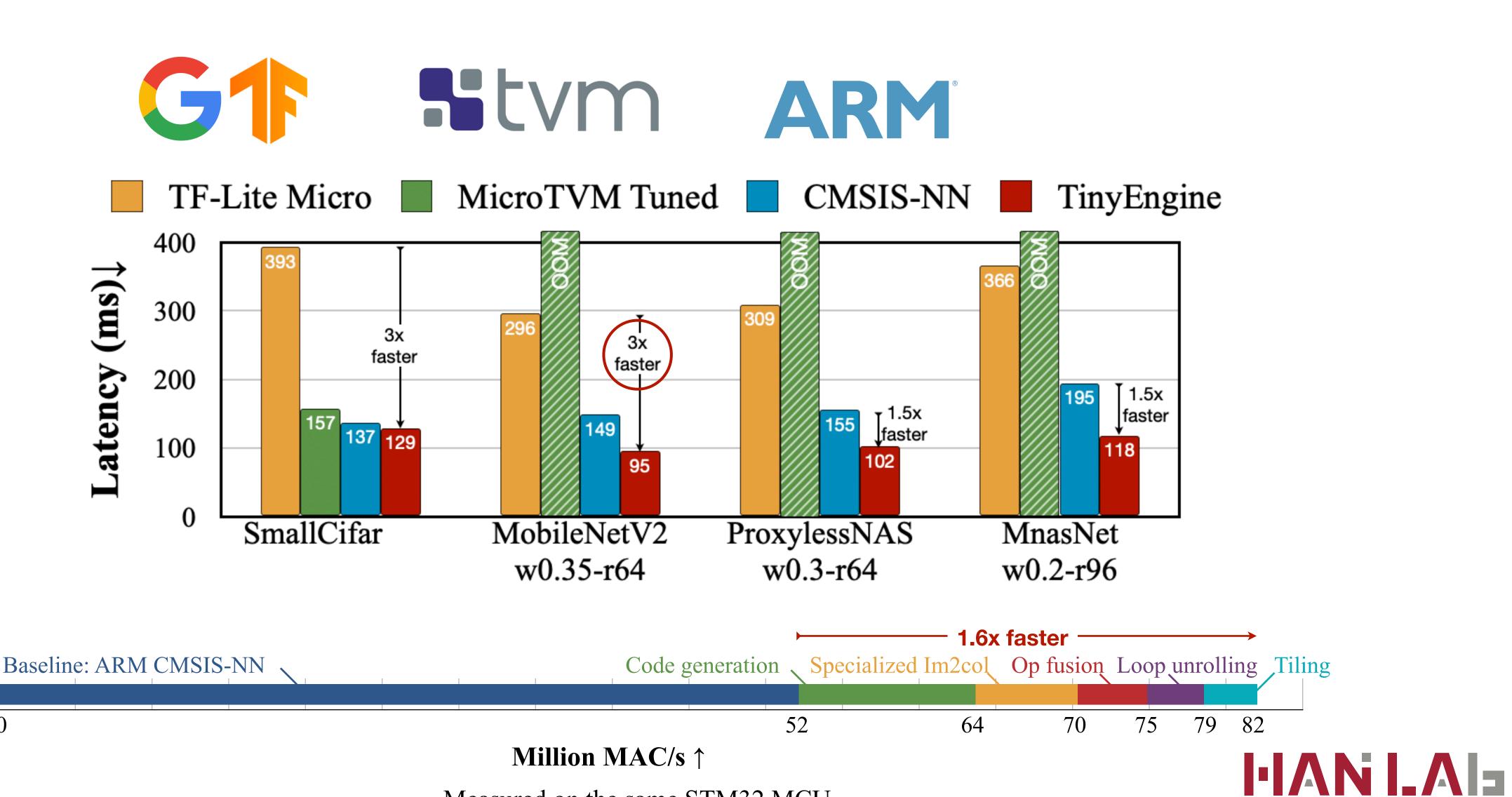
MIT researchers have developed a system, called MCUNet, that brings machine learning to microcontrollers. The advance could enhance the function and security of devices connected to the Internet of Things (IoT). -MIT News



Accuracy

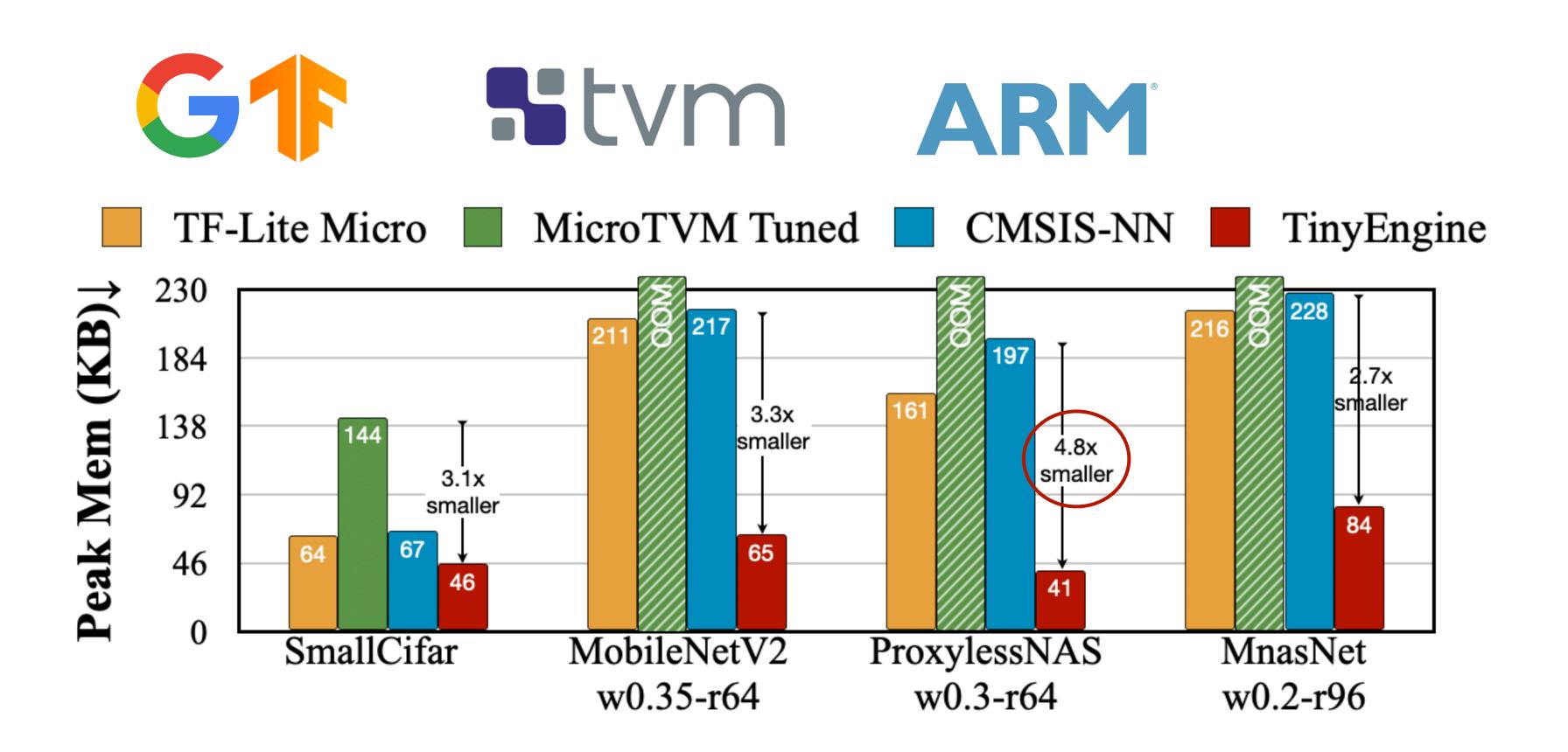
large scale

TinyEngine: Speedup



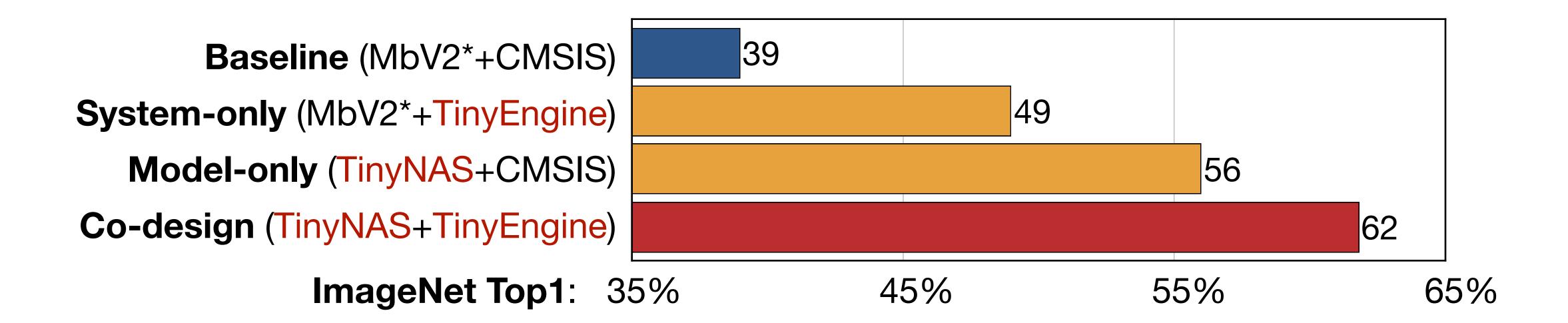
Measured on the same STM32 MCU

TinyEngine: Memory Saving



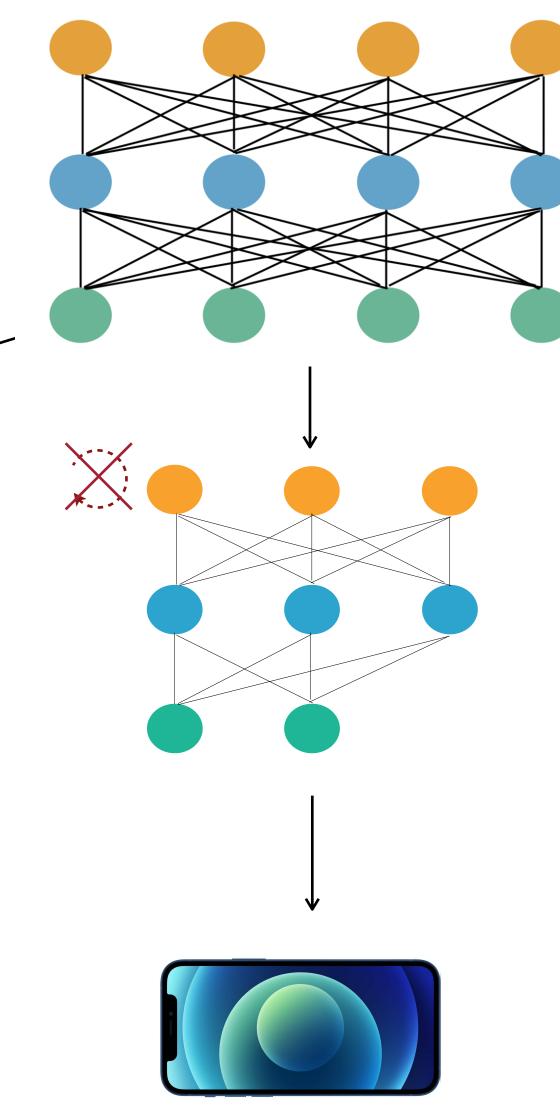
MCUNet: TinyNAS+TinyEngine

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)

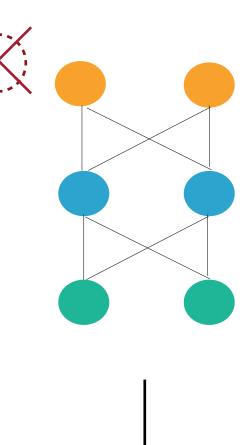


^{*} scaled down version

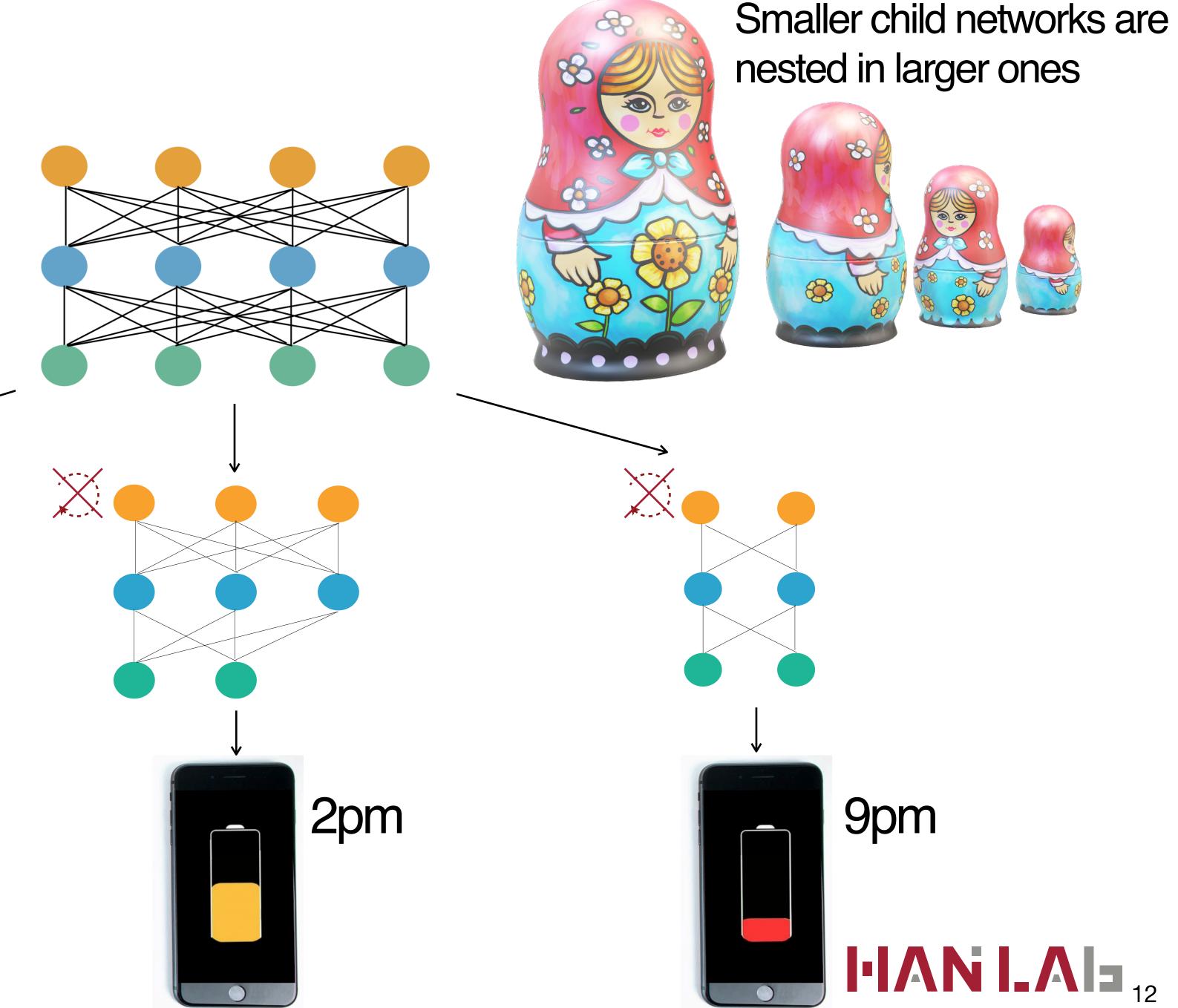
Train once, get many Redude the marginal design cost Fit diverse hardware constraints

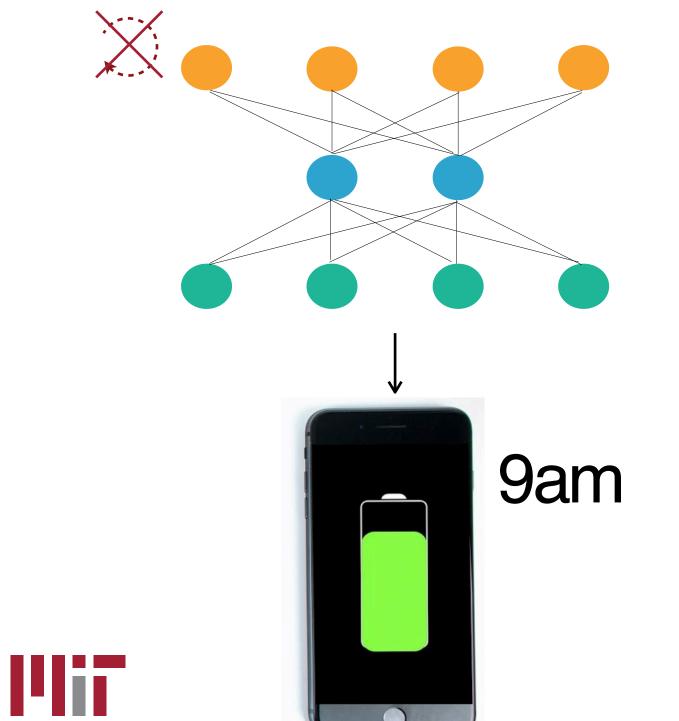


Smaller child networks are nested in larger ones

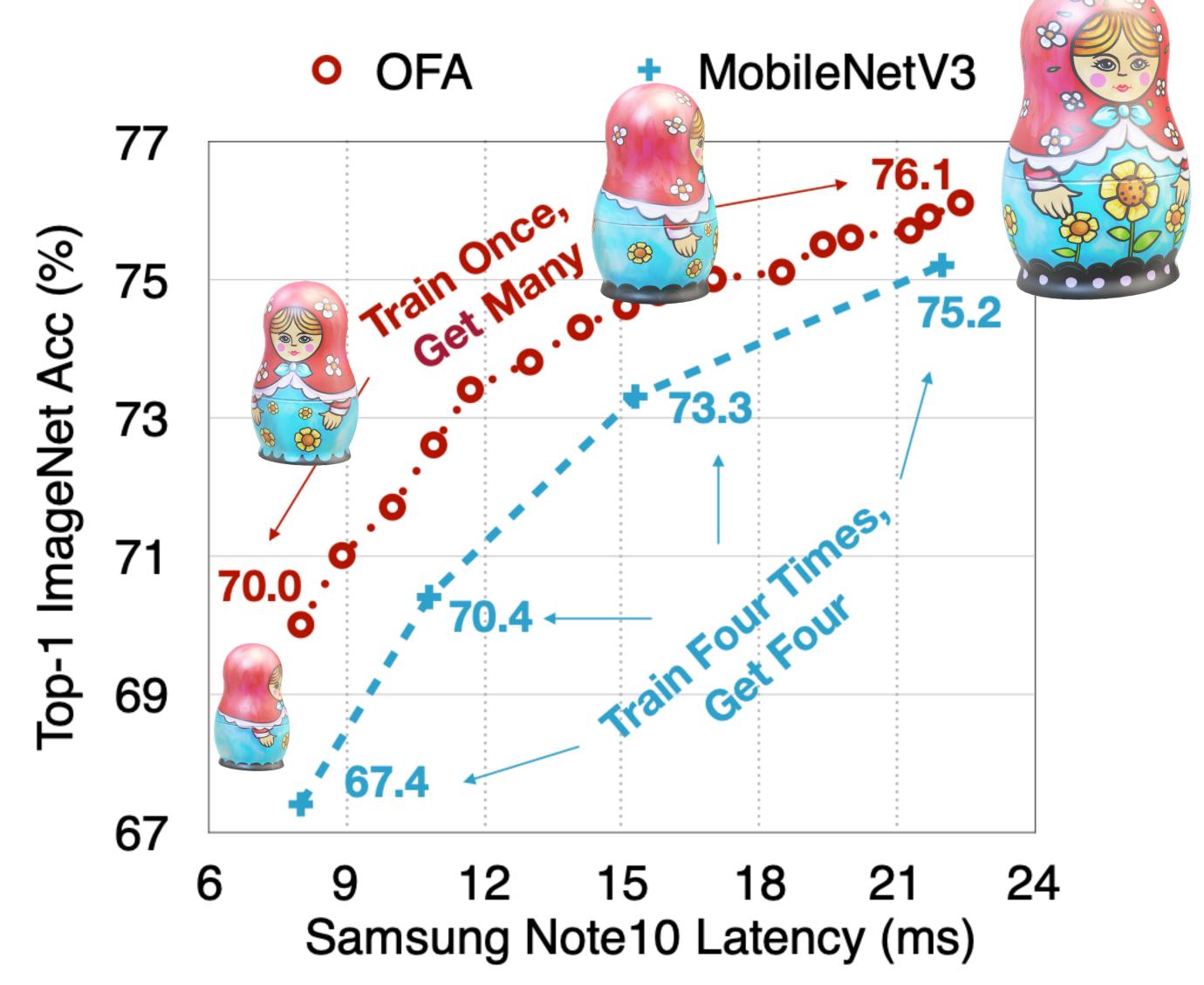


Train once, get many Redude the marginal design cost Fit diverse hardware constraints

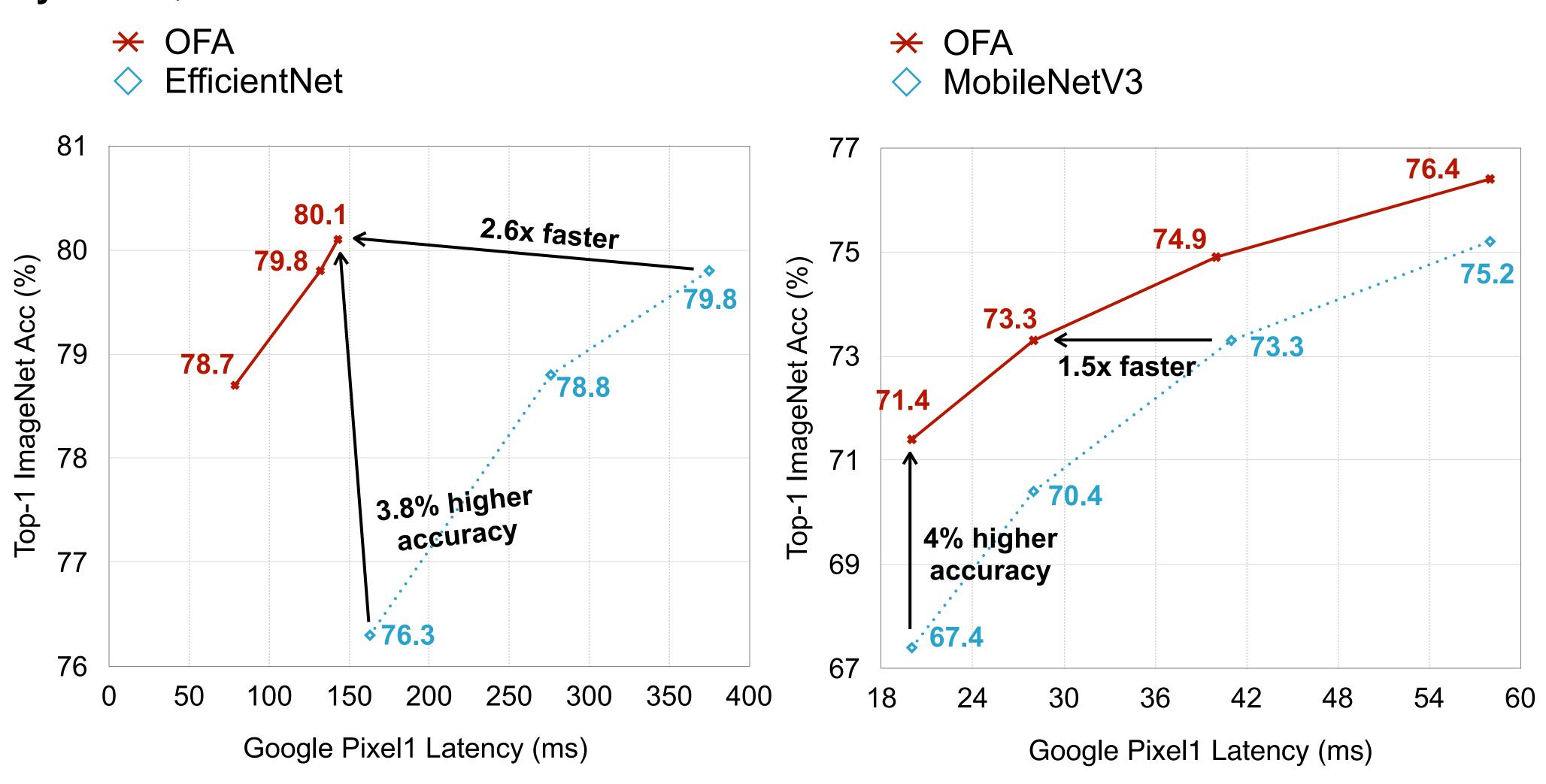




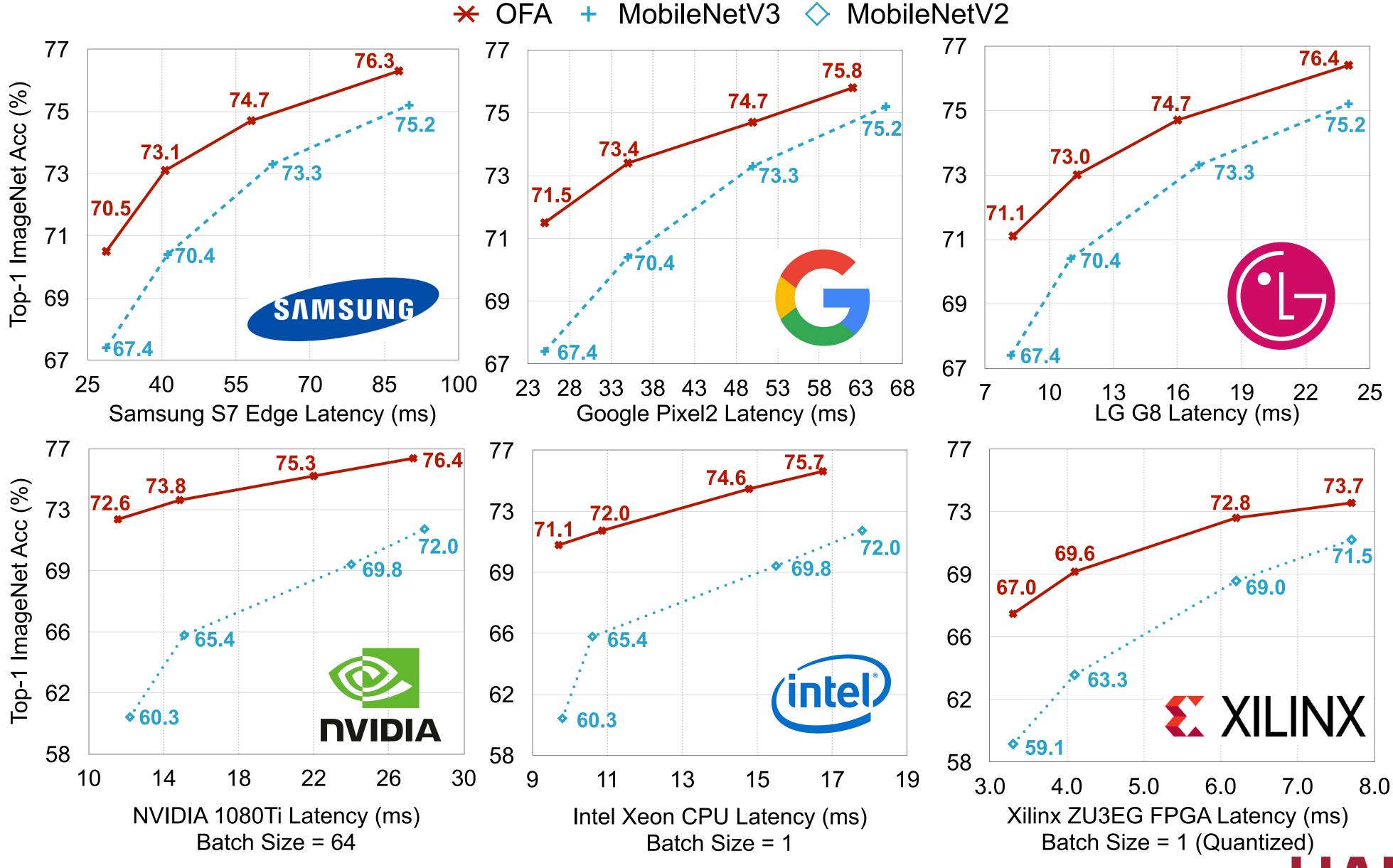
Train only once, generate the entire Pareto curve



Train only once, handle diverse hardware constraints



Training from scratch cannot achieve the same level of accuracy

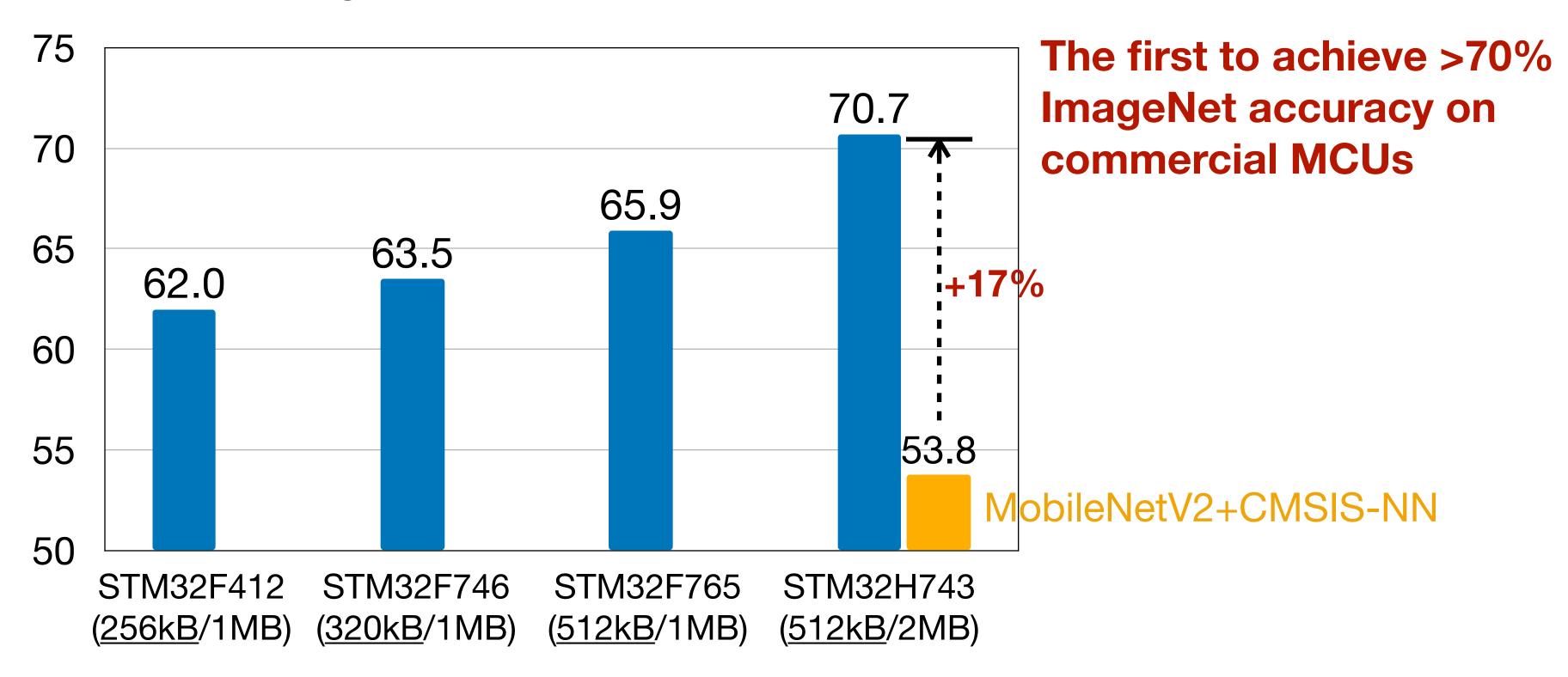


Once-for-All, ICLR'20

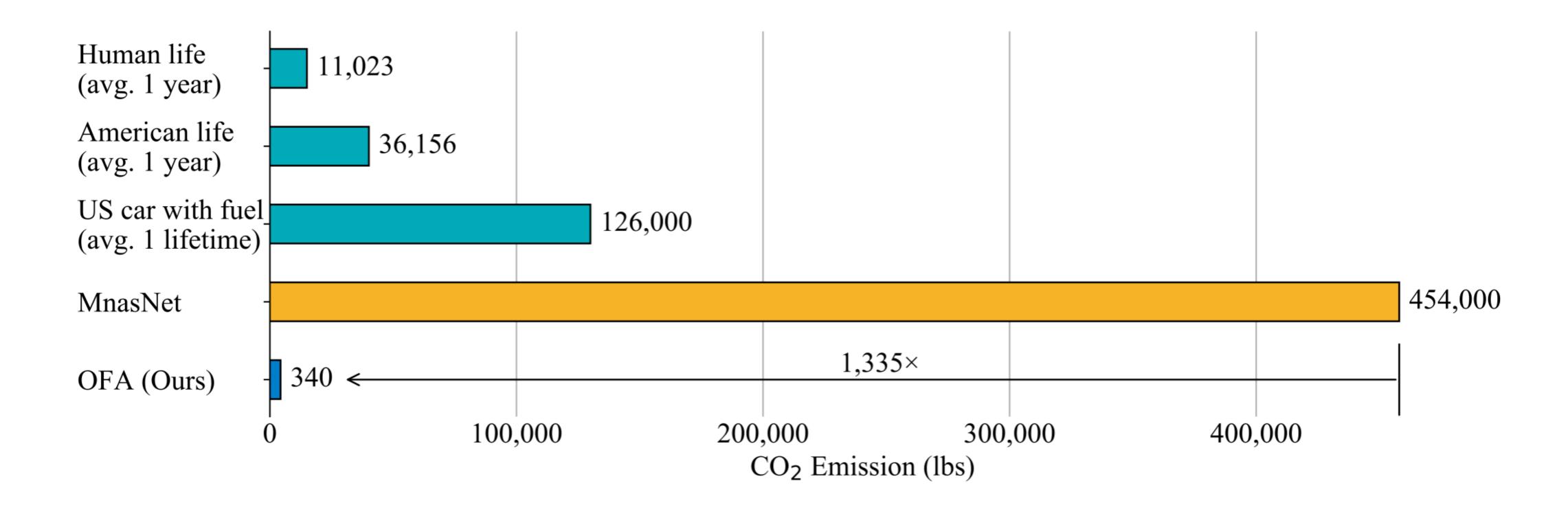
I-IANILAI 15

Specializing models (int4) for different MCUs (<u>SRAM</u>/Flash)

ImageNet Top-1 Accuracy (%)



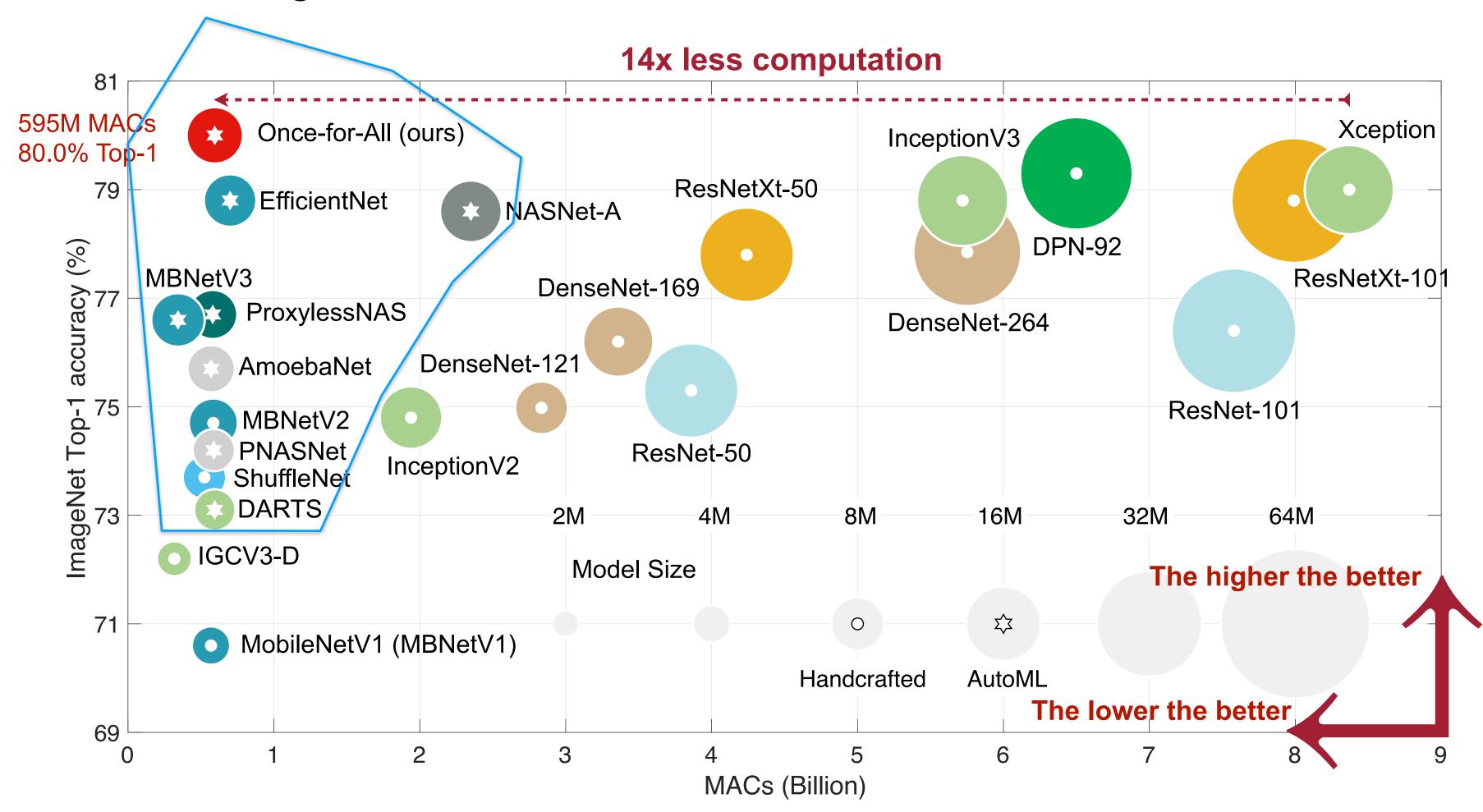
Consistently Outperforms Human Baselines
Turn-key solution for many hardware platforms: CPU/GPU/DSP/FPGA



Six first-place finishes in top competitions in efficient Al

AutoML, Neural Architecture Search

Consistently outperforms human baselines Turn-key solution for co-design



Once-for-all model (<u>ofa.mit.edu</u>) sets a new state-of-the-art 80% ImageNet top-1 accuracy under the mobile vision setting (< 600M MACs).

Applications

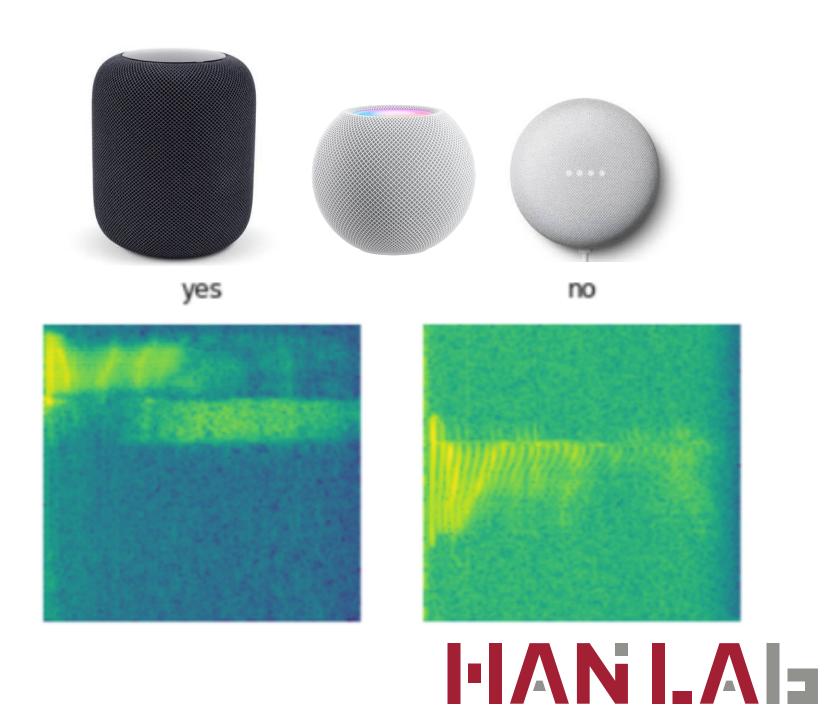
We focus on large-scale datasets to reflect real-life use cases.

Datasets:

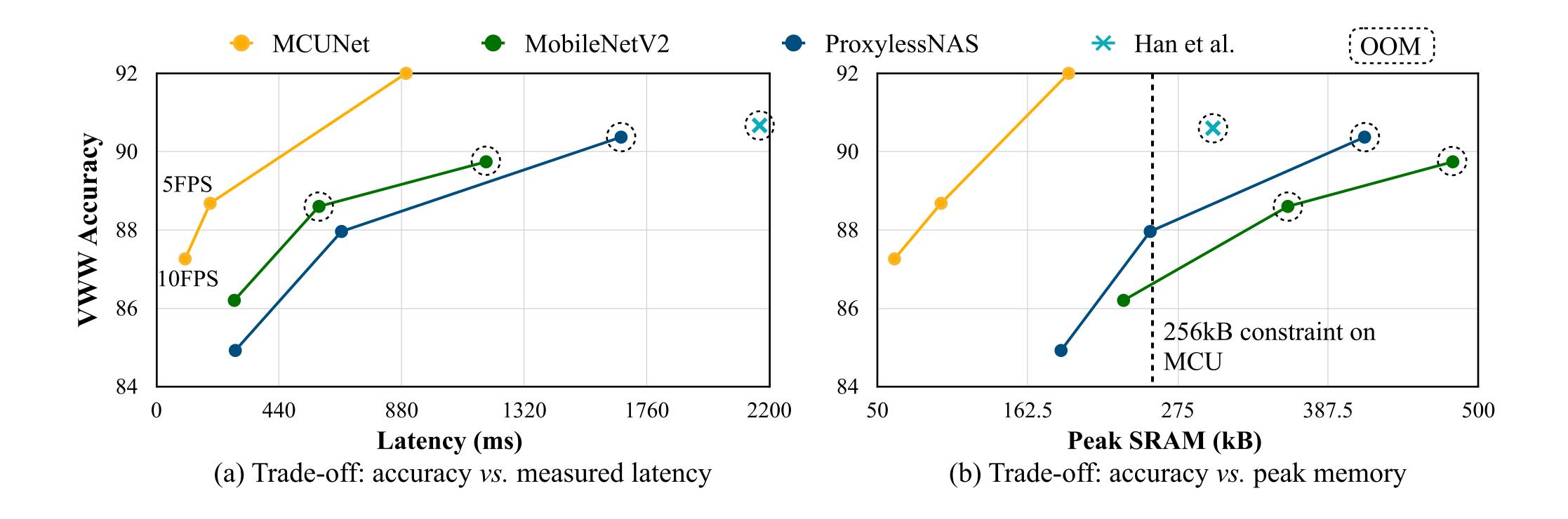
- (1) ImageNet-1000
- (2) Wake Words
 - Visual: Visual Wake Words
 - Audio: Google Speech Commands

(a) 'Person'

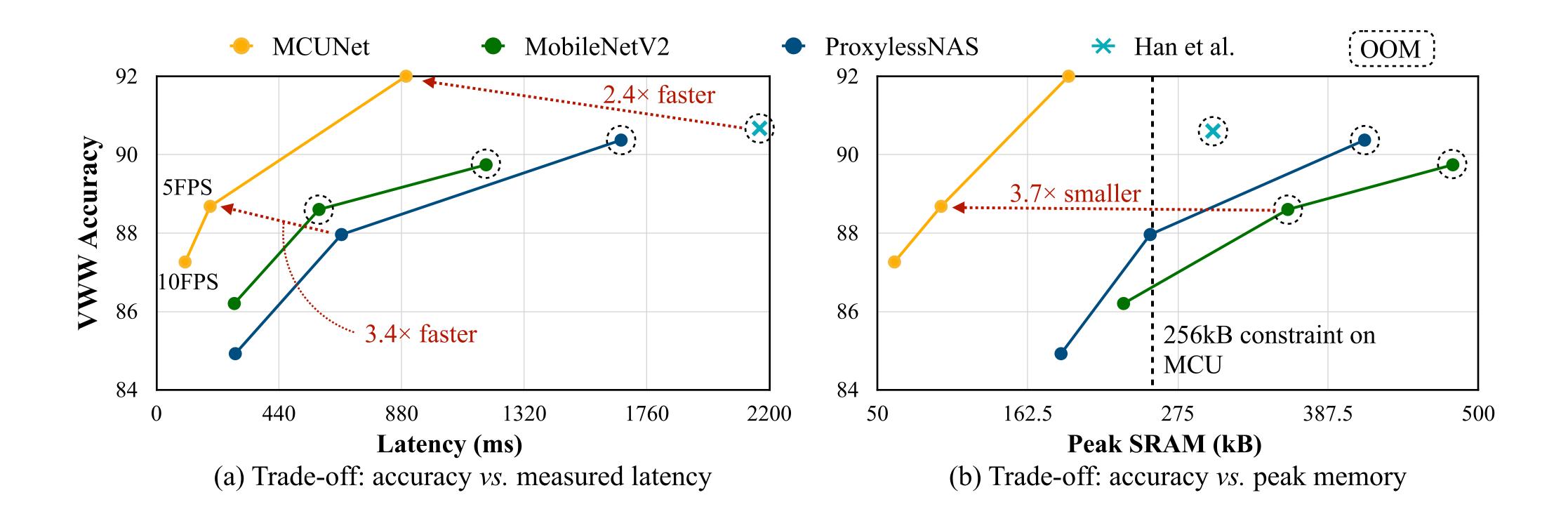
(b) 'Not-person'



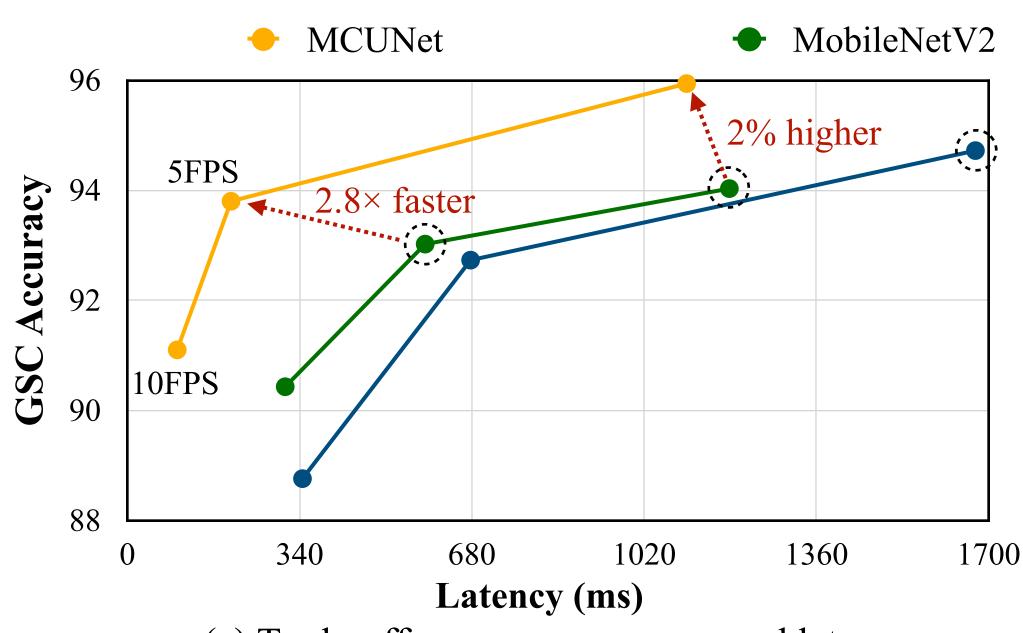
Visual Wake Words (VWW)



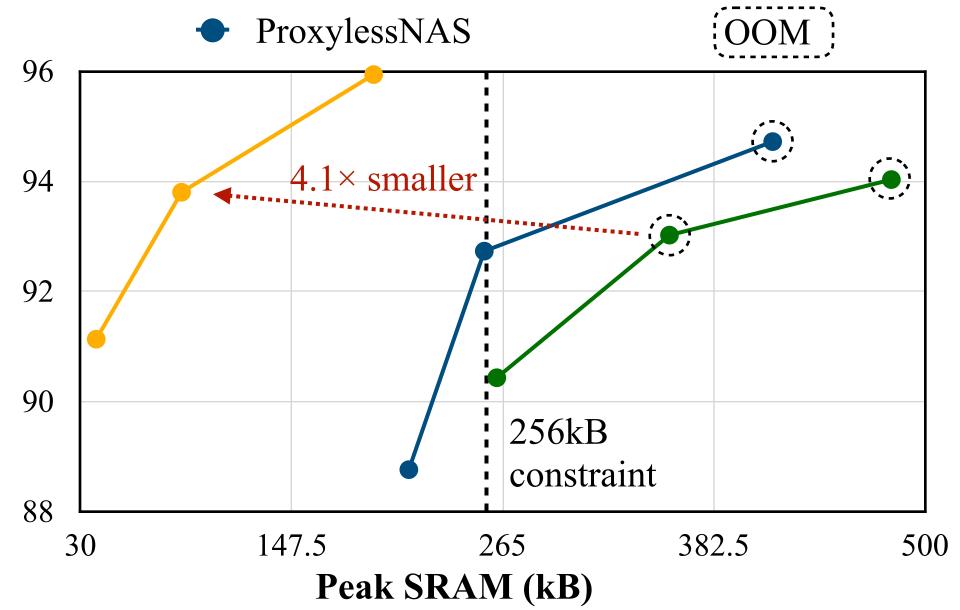
Visual Wake Words (VWW)



Audio Wake Words (Speech Commands)



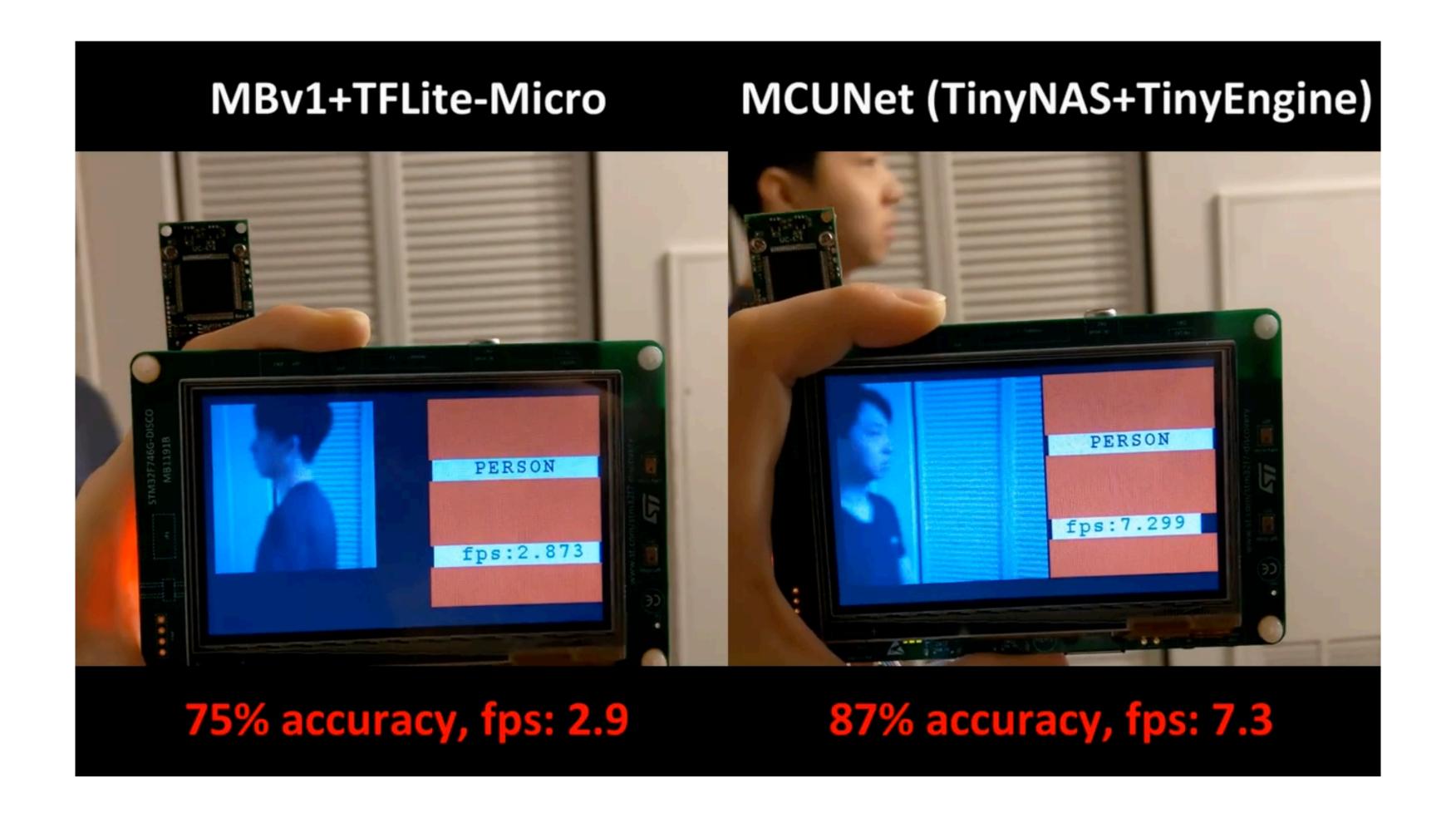
(a) Trade-off: accuracy vs. measured latency



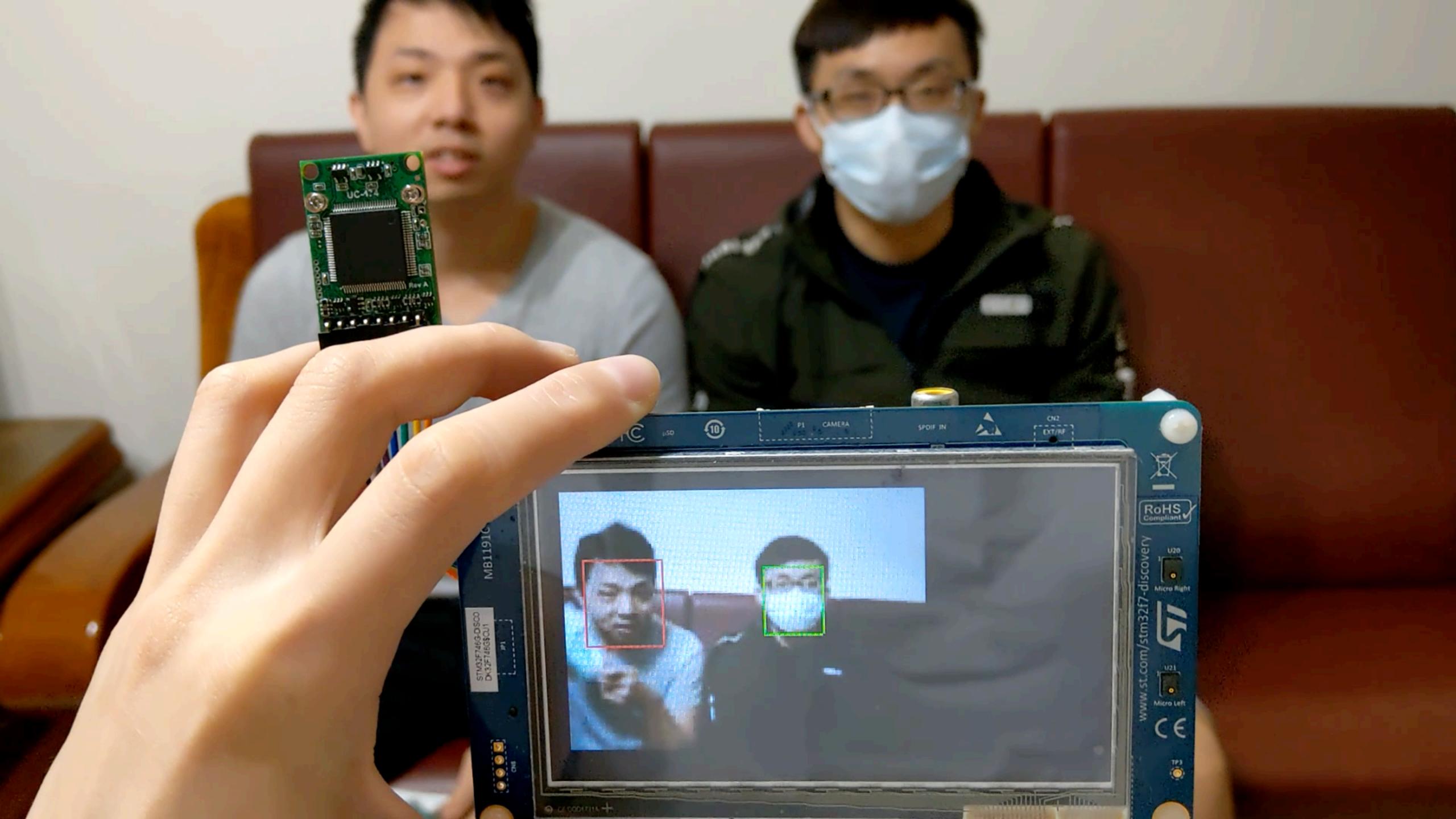
(b) Trade-off: accuracy vs. peak memory

Visual Wake Word Detection

Detecting whether a person is present in the frame



Demo:

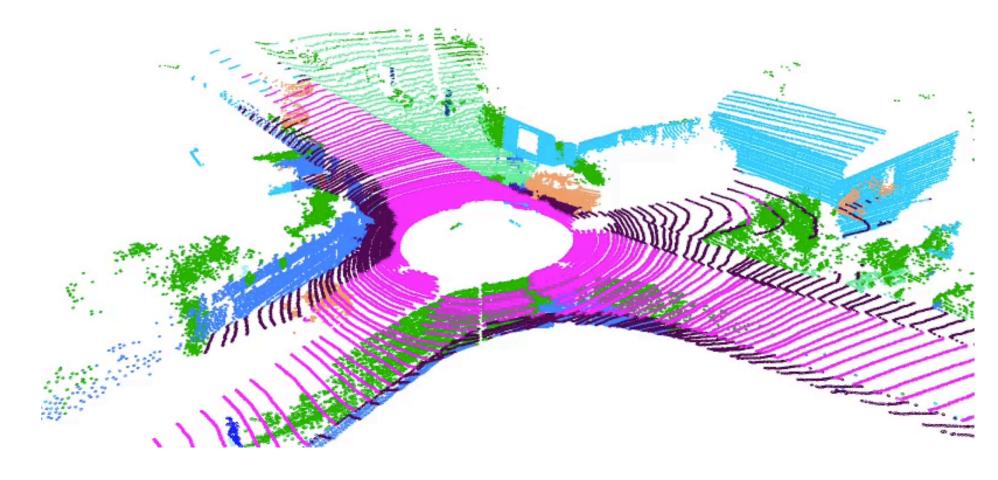


TinyML for Point Cloud

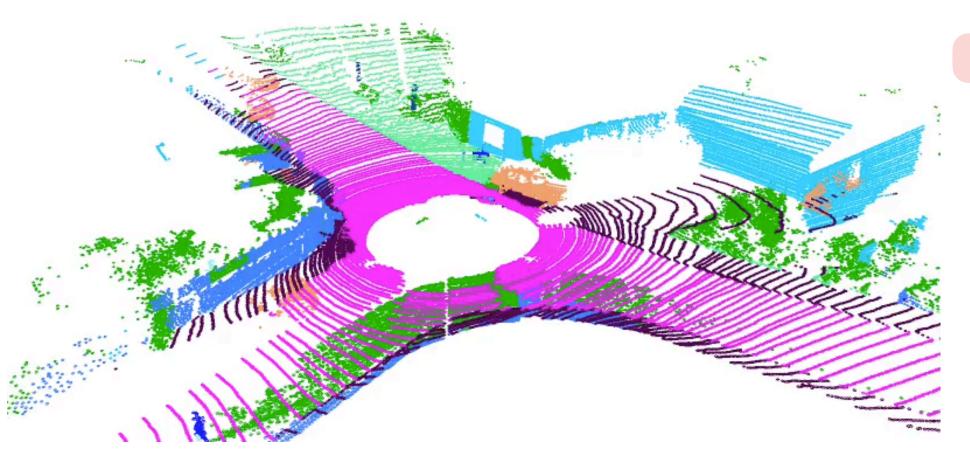
AR/VR: a whole backpack of computer

Self-driving: a whole trunk of GPU

Mobile phone: limited battery



MinkowskiNet: 3.4 FPS

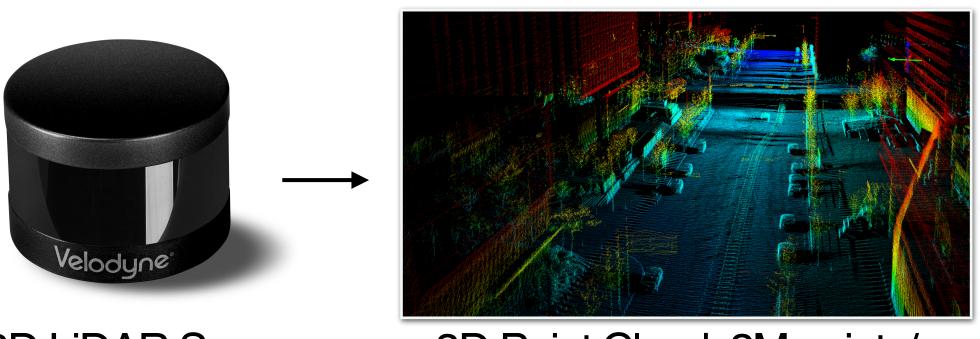


SPVNAS (Ours): 9.1 FPS

accuracy ranks 1st on the SemanticKitti leaderboard

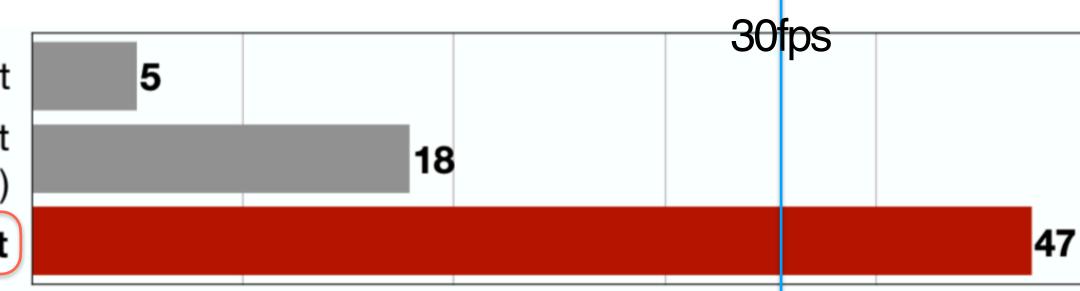
	Approach	Paper	Code	mloU	Classes (IoU)
	SPVNAS	Ä		67.0	
-	TORNADONet	ß		63.1	
	KPRNet	<u>,</u>		63.1	
	Cylinder3D	ß	0	61.8	
	FusionNet	ß	0	61.3	
	SalsaNext	ß	0	59.5	
	KPConv	ß	0	58.8	
	SqueezeSegV3	ß	0	55.9	

TinyML for Driving



MinkowskiNet
MinkowskiNet
(w/ Kernel Optimization)

Fast-LiDARNet



3D LiDAR Sensor

3D Point Cloud: 2M points/s

Inference Speed (Frames / Second)

Real-World Deployment We evaluate our model on a full-scale vehicle in the real-world

Demo:

I-IANI_AI=

TinyML for GAN

Accelerating Horse2zebra by GAN Compression

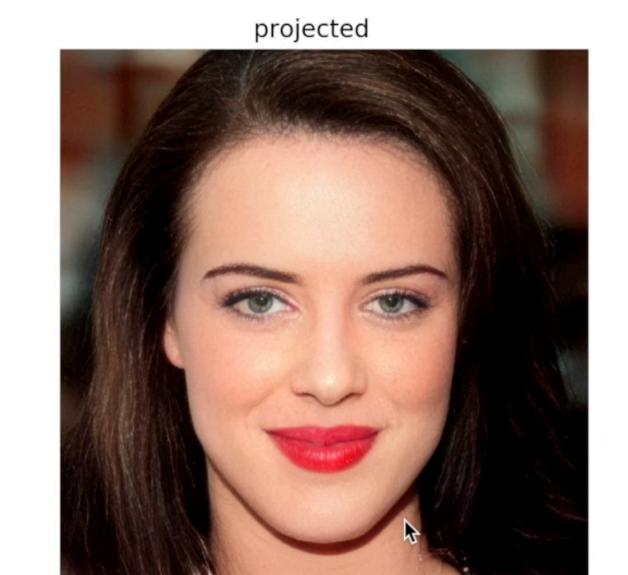
Demo:

Original CycleGAN; FLOPs: 56.8G; FPS: 12.1; FID: 61.5

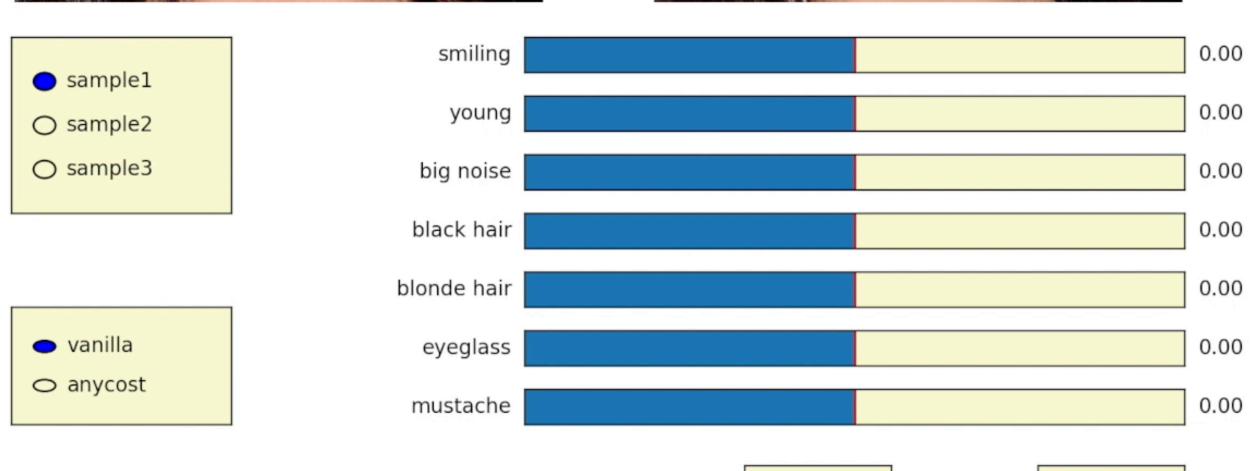
GAN Compression; FLOPs: 3.50G (16.2x); FPS: 40.0 (3.3x); FID: 53.6

TinyML for GANs

original

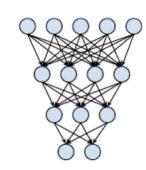


Demo:

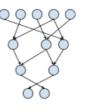


* Status: readv

Large Neural Networks

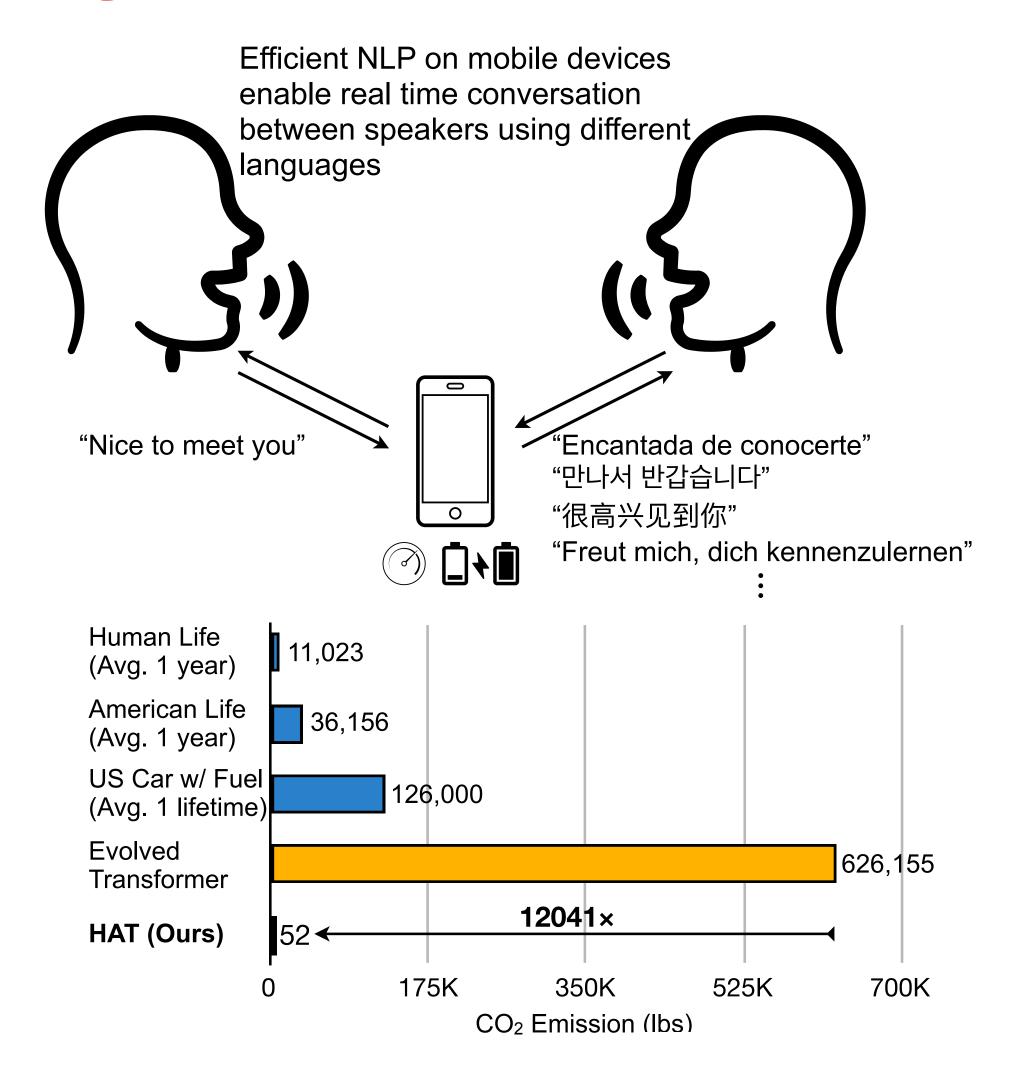


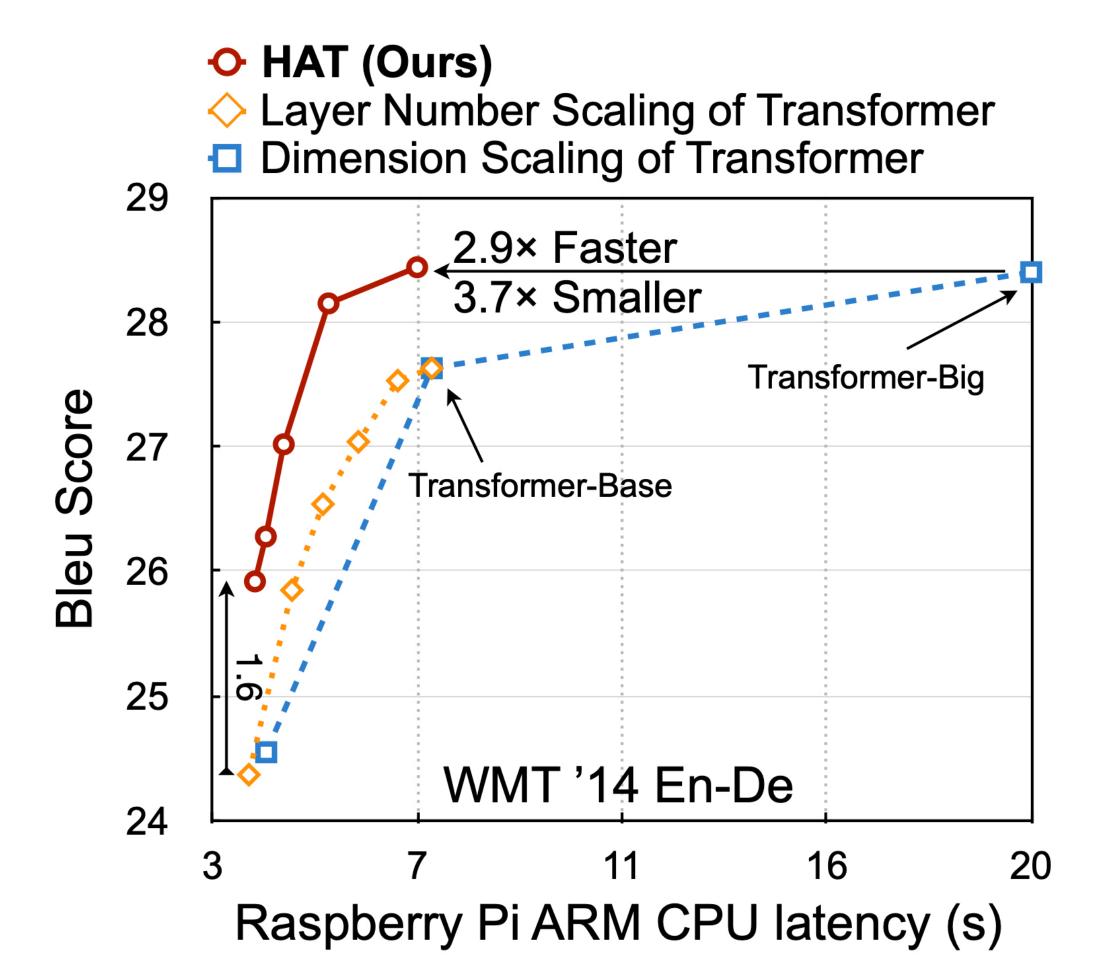
Reset

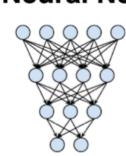


Finalize

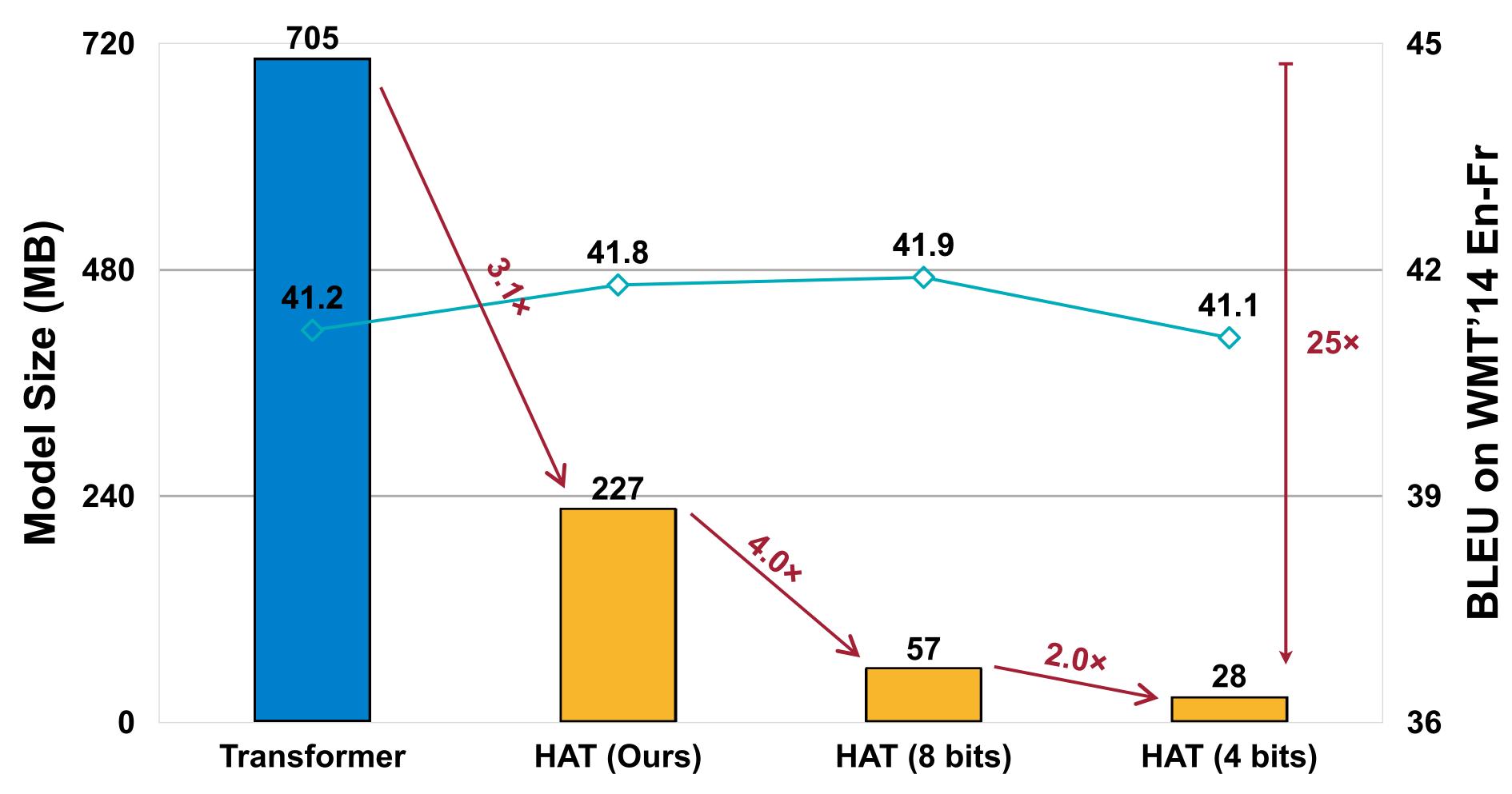
AnyCost GAN, CVPR'21





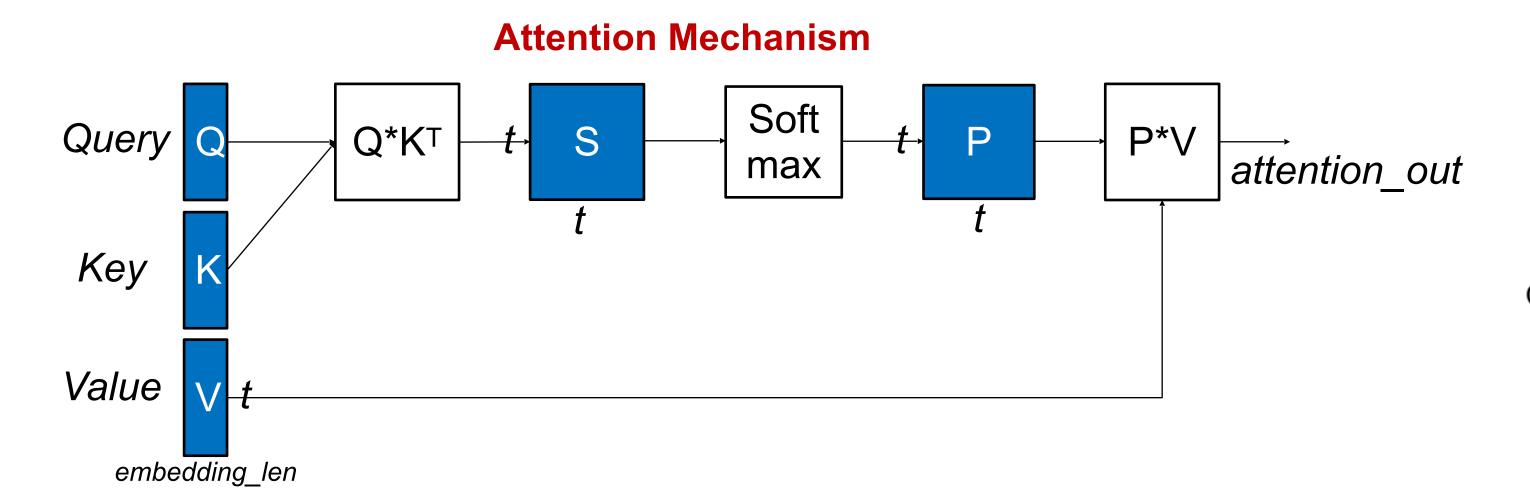


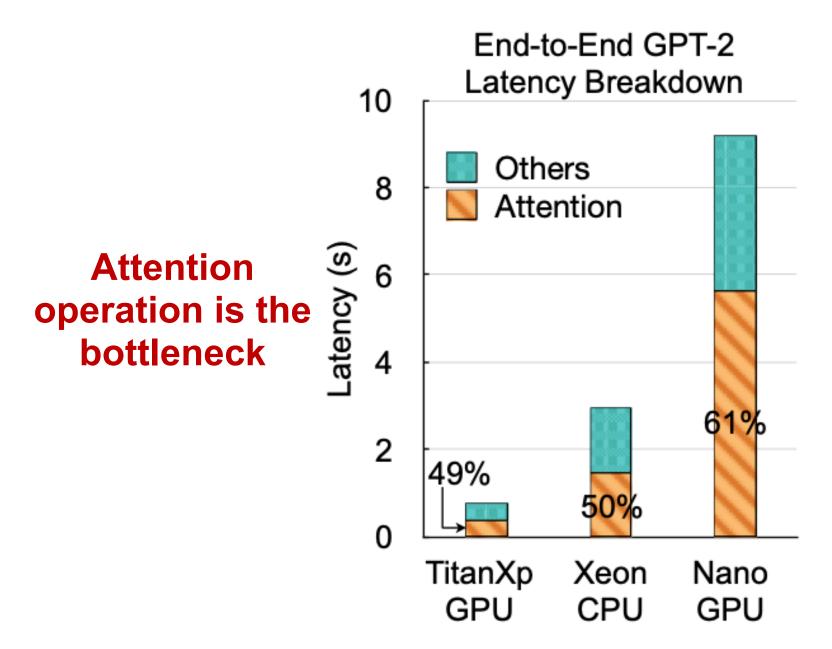
On WMT'14 En-Fr Task



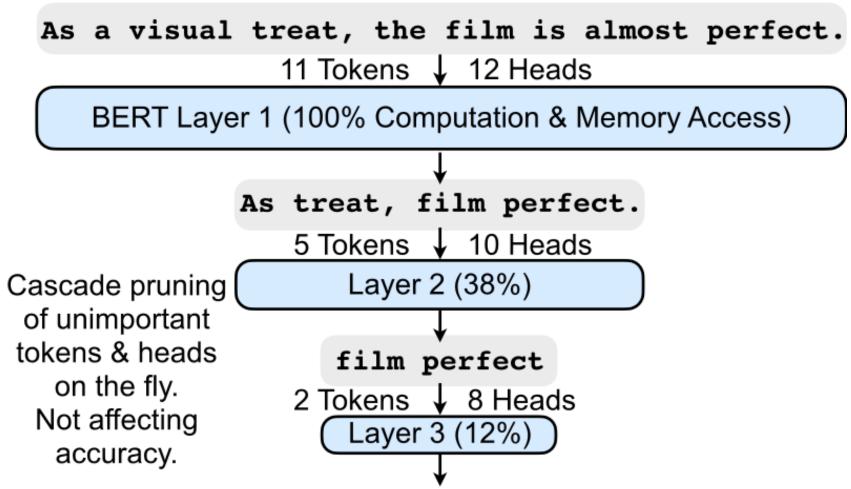
HAT is orthogonal to general model compression techniques

- Motivation: Attention layer in natural language processing models is the bottleneck for end-to-end performance.
- Main idea: Reduce the redundant computation.
- Cascade Token and head pruning: Based on attention distribution, we remove unimportant tokens and heads to reduce computation and memory access.
- 2. Progressive quantization: progressively fetch MSB and LSB to reduce average bitwidth. If attention distribution is flat, using MSB is sufficient for accuracy.





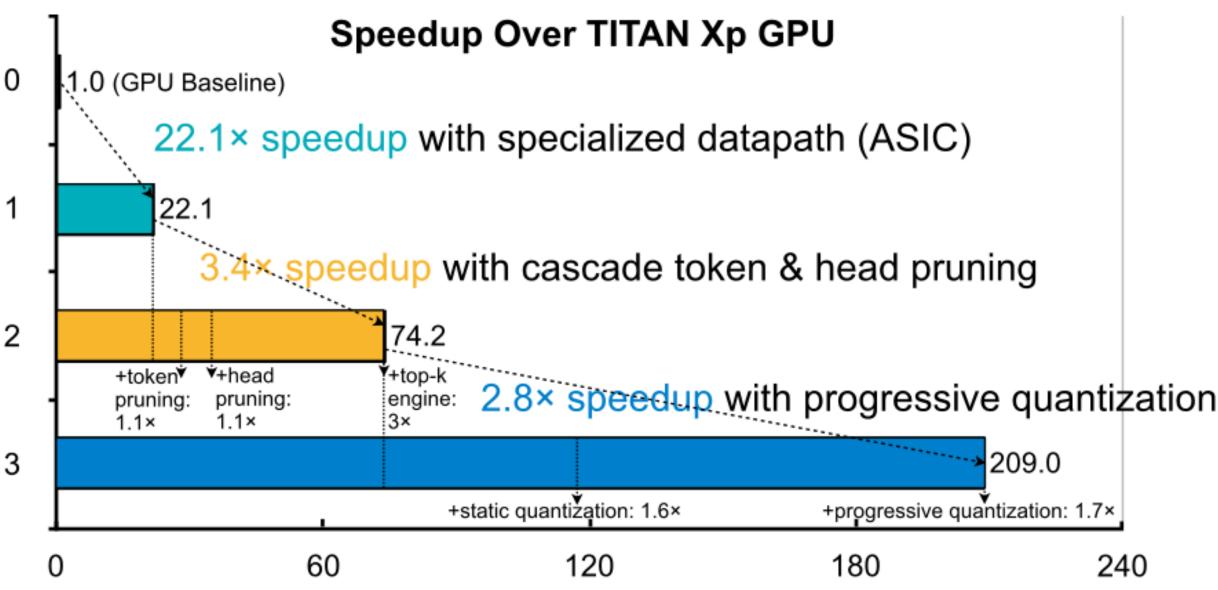
Cascade token and head pruning



Platform	Power (W)	Performance (GFLOPS)	Energy Efficiency (GFLOP/J)
Raspberry Pi (ARM)	3.49	0.33 (5,945x)	0.095 (2,529x)
Nvidia Nano (GPU)	2.88	1.58 (1,241x)	0.55 (457x)
Intel Xeon (CPU)	96.1	4.89 (401x)	0.051 (4,888x)
TITAN Xp (GPU)	56.7	10.6 (185x)	0.19 (1,428x)
SpAtten-full (ASIC)	7.96	1962	246

*SpAtten over general-purpose platforms

Platform	Power (W)	Performance (GFLOPS)	Energy Efficiency (GFLOP/J)
A3 (ASIC)	2.00	221 (1.6x)	269 (1.4x)
MNNFast (ASIC)	0.823	120 (3.0x)	120 (3.2x)
SpAtten-small (ASIC)	0.942	360	382



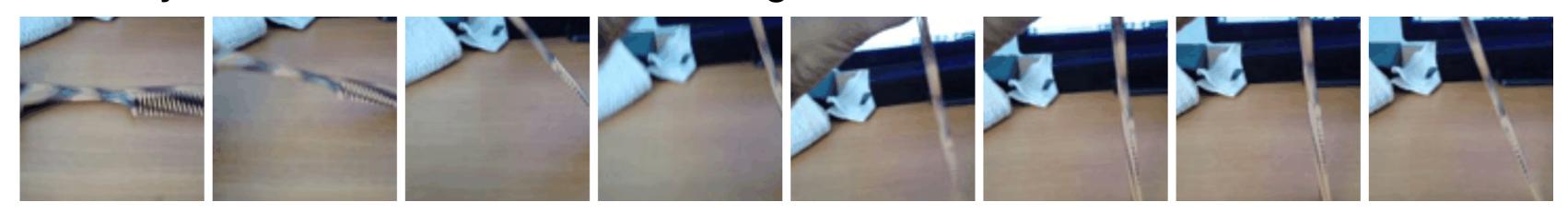
Speedup breakdown of SpAtten over GPU

SpAtten* over state-of-the-art accelerators

TinyML for Video Recognition

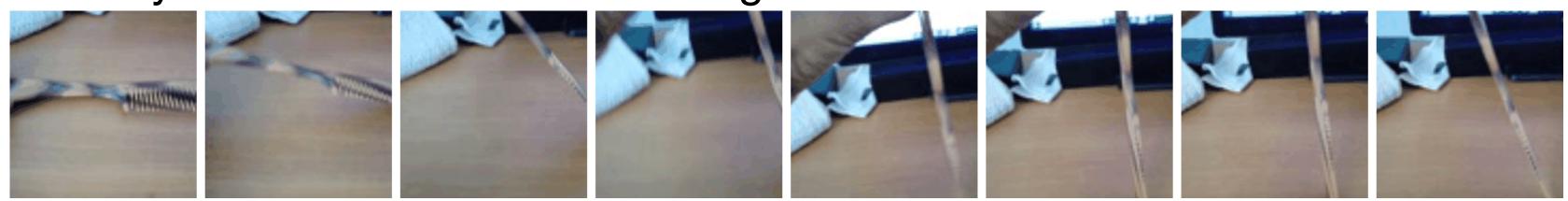
I3D:

Latency: 164.3 ms/Video Something-V1 Acc.: 41.6%



TSM:

Latency: 17.4 ms/Video Something-V1 Acc.: 43.4%



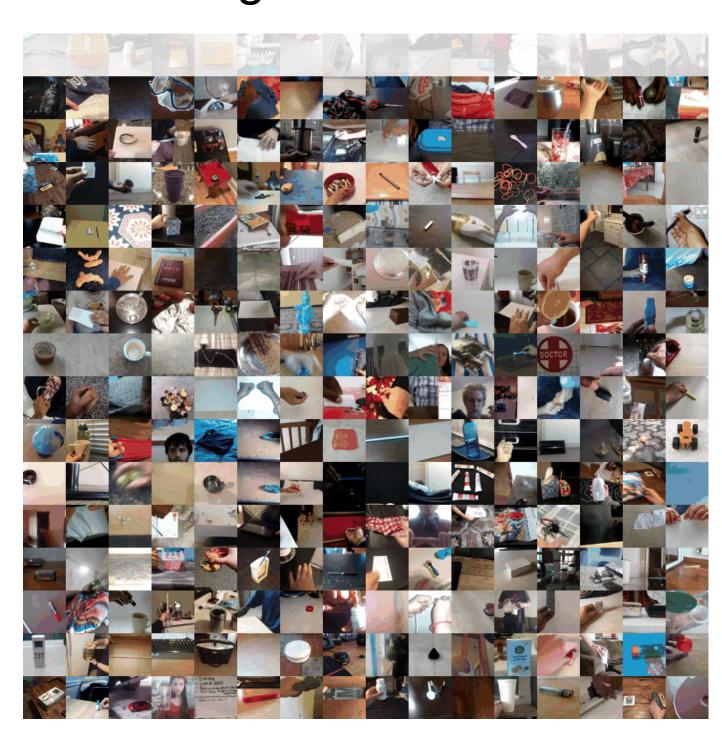
Speed-up: 9x

TinyML for Video Recognition

I3D:

Throughput: **6.1** video/s

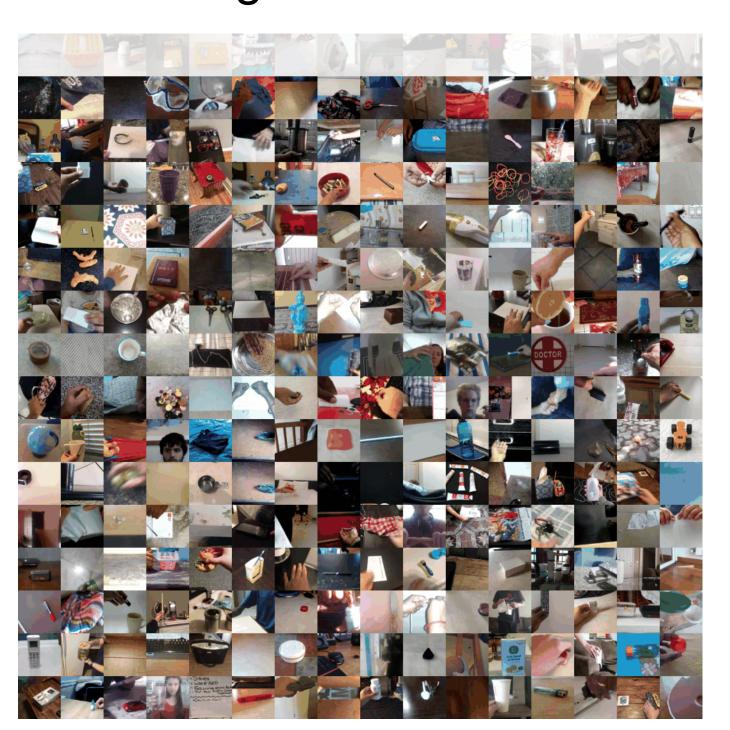
Something-V1 Acc.: 41.6%



TSM:

Throughput: 77.4 video/s

Something-V1 Acc.: 43.4%



12.7x higher throughput

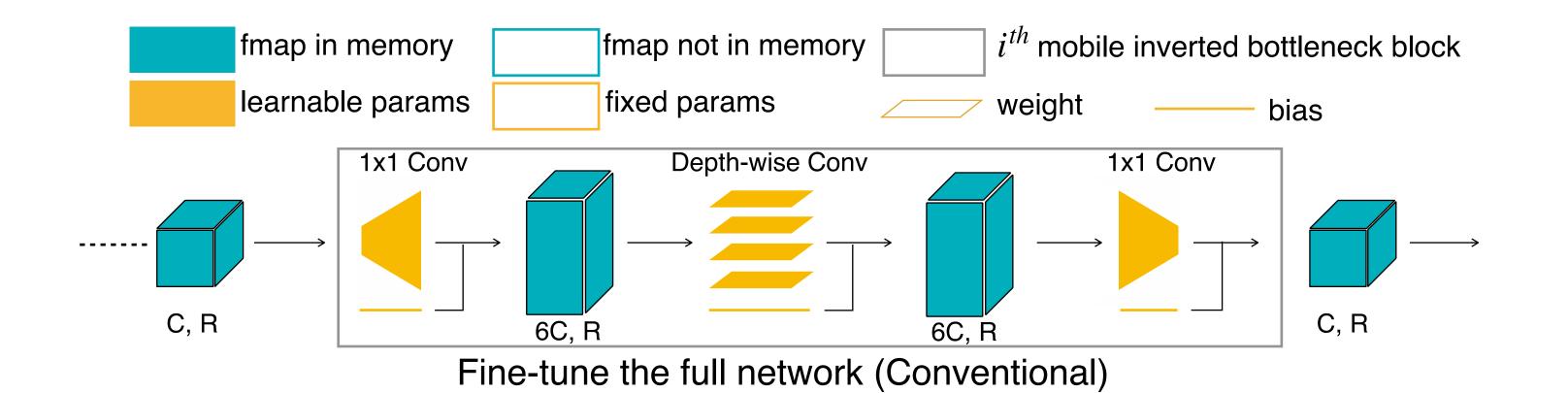
TinyML and Efficient Deep Learning

- Optimize the Computation Efficiency
 - Inference: MCUNet for IoT Devices [NeurIPS'20, spotlight]
 - Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS'20]
- Optimize the Data Efficiency
 - Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS'20]

TinyTL: Reduce Memory, not Parameters for Efficient On-Device Learning

Han Cai¹ Chuang Gan² Ligeng Zhu¹ Song Han¹ ¹MIT ²MIT-IBM Watson AI Lab

Weight update is Memory-expensive; Bias update is Memory-efficient

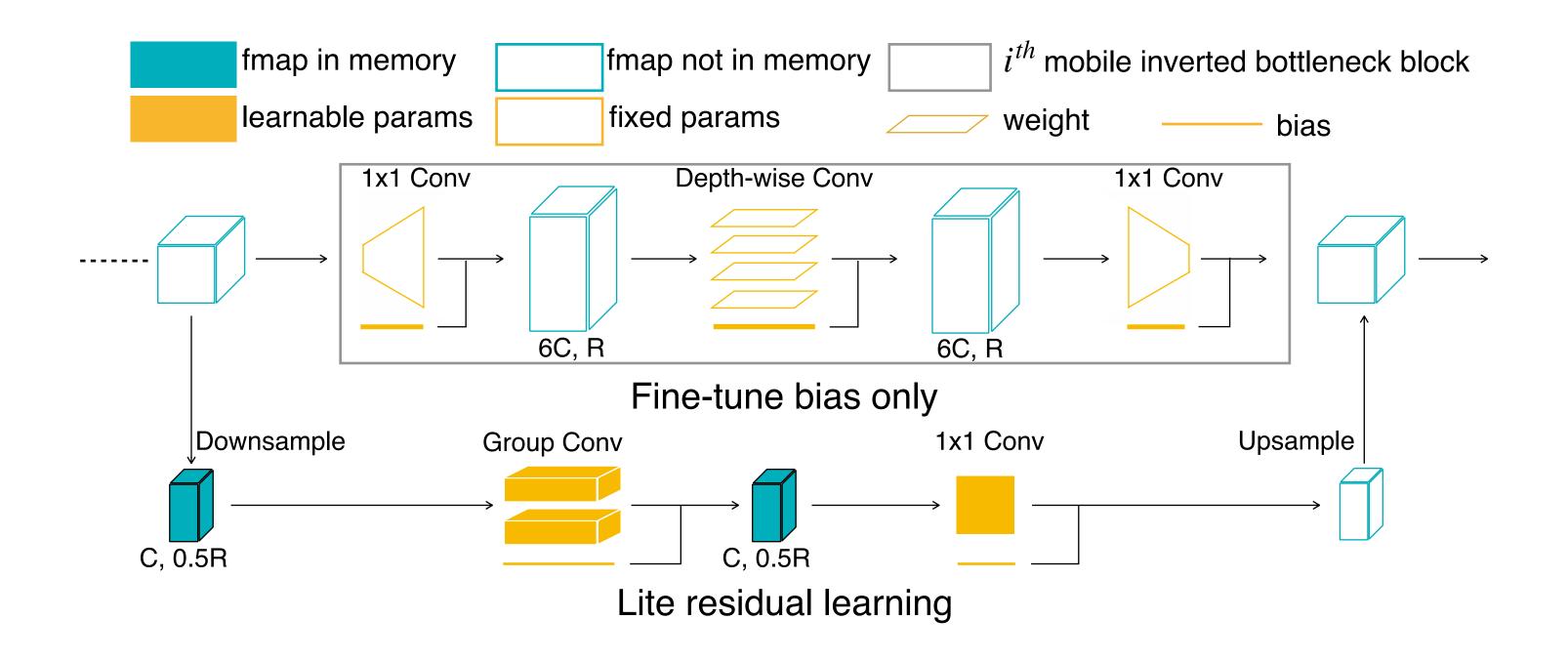


Forward:
$$\mathbf{a}_{i+1} = \mathbf{a}_i \mathbf{W}_i + \mathbf{b}_i$$

Backward:
$$\frac{\partial L}{\partial \mathbf{W}_i} = \mathbf{a}_i^T \frac{\partial L}{\partial \mathbf{a}_{i+1}}, \qquad \frac{\partial L}{\partial \mathbf{b}_i} = \frac{\partial L}{\partial \mathbf{a}_{i+1}} = \frac{\partial L}{\partial \mathbf{a}_{i+2}} \mathbf{W}_{i+1}^T$$

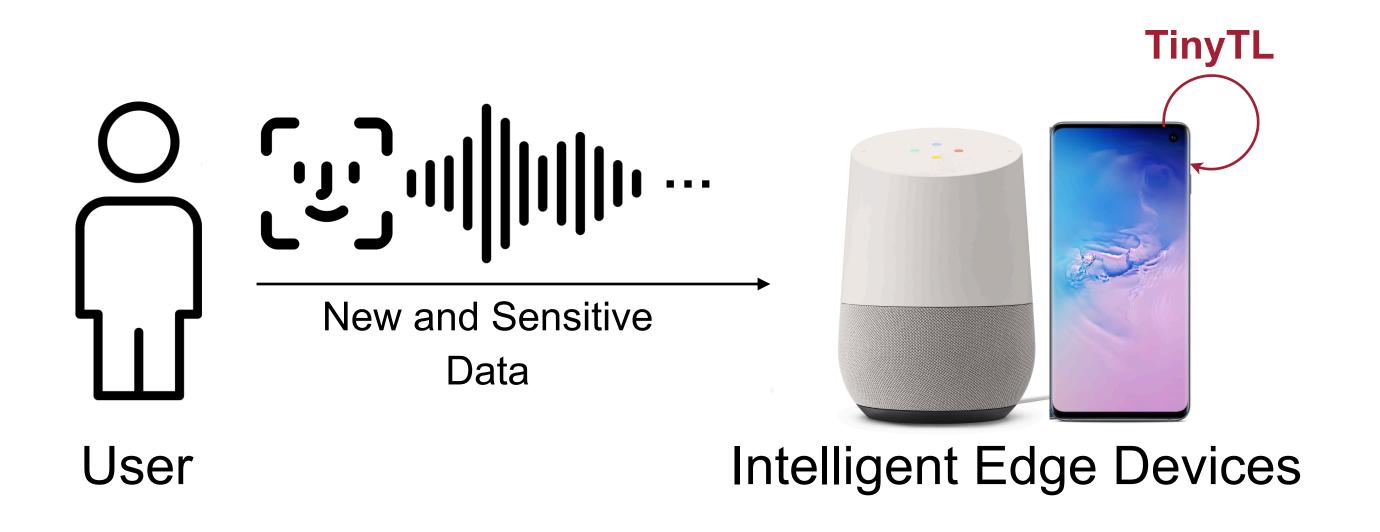
- Updating weights requires storing intermediate activations
- Updating biases does not

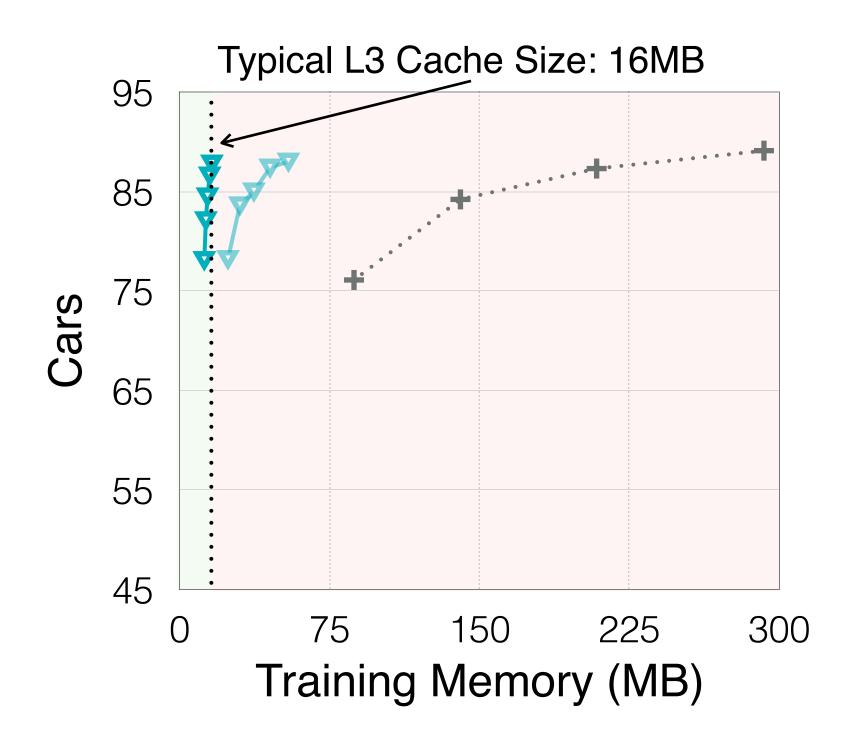
TinyTL: Lite Residual Learning



- Add lite residual modules (small memory overhead) to increase model capacity
 - (1/6 channel, 1/2 resolution, 2/3 depth)

TinyTL: Reduce Memory, not Parameters for Efficient On-Device Learning





Project Page: http://tinyml.mit.edu

TinyML and Efficient Deep Learning

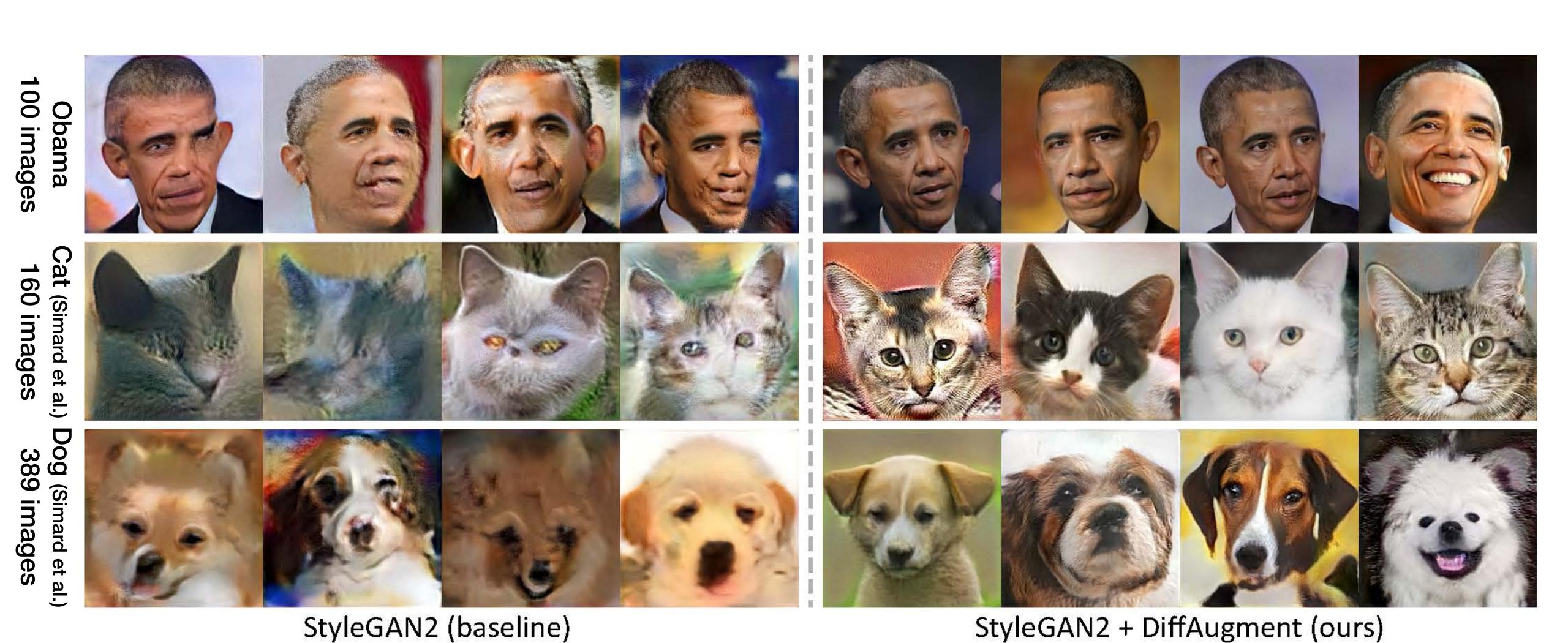
- Optimize the Computation Efficiency
 - Inference: MCUNet for IoT Devices [NeurIPS'20, spotlight]
 - Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS'20]
- Optimize the Data Efficiency
 - Differentiable Augmentation for Data-Efficient GAN Training [NeurlPS'20]

Differentiable Augmentation for Data-Efficient GAN Training

Shengyu Zhao^{1,2} Zhijian Liu¹ Ji Lin¹ Jun-Yan Zhu^{3,4} Song Han¹

¹MIT ²IIIS, Tsinghua University ³Adobe Research ⁴CMU

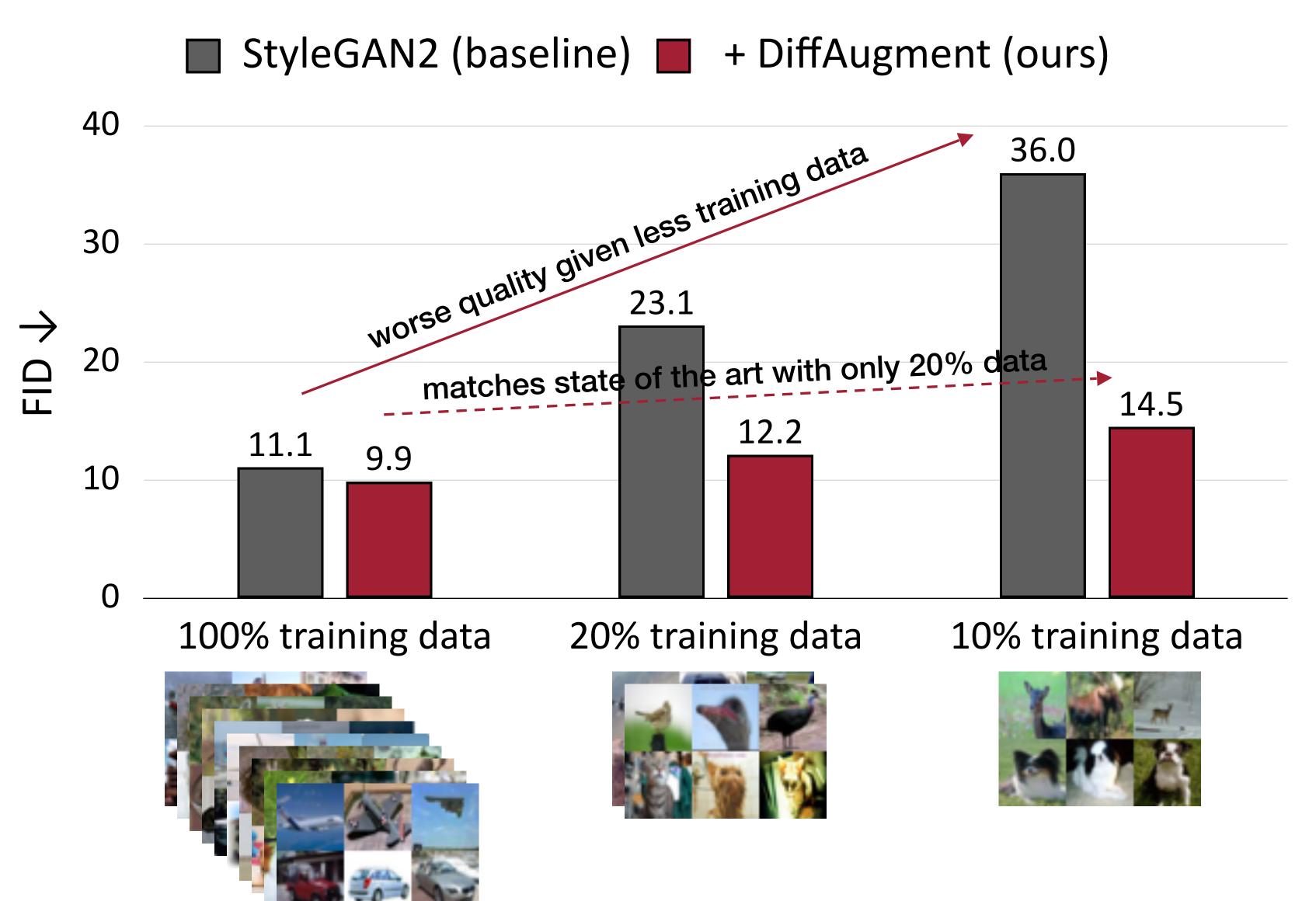
Low-Shot Generation



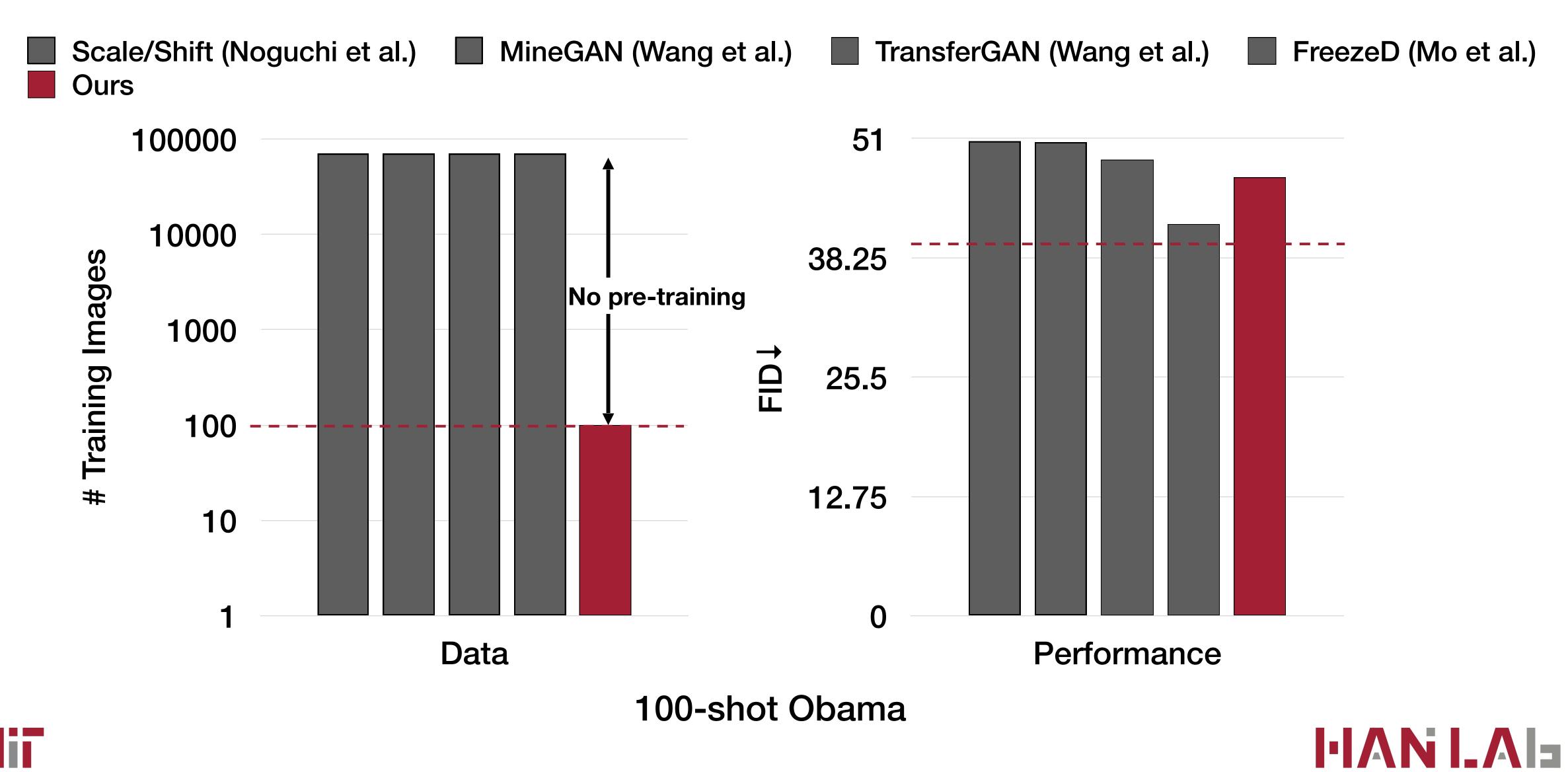
Ш

HAN LAL

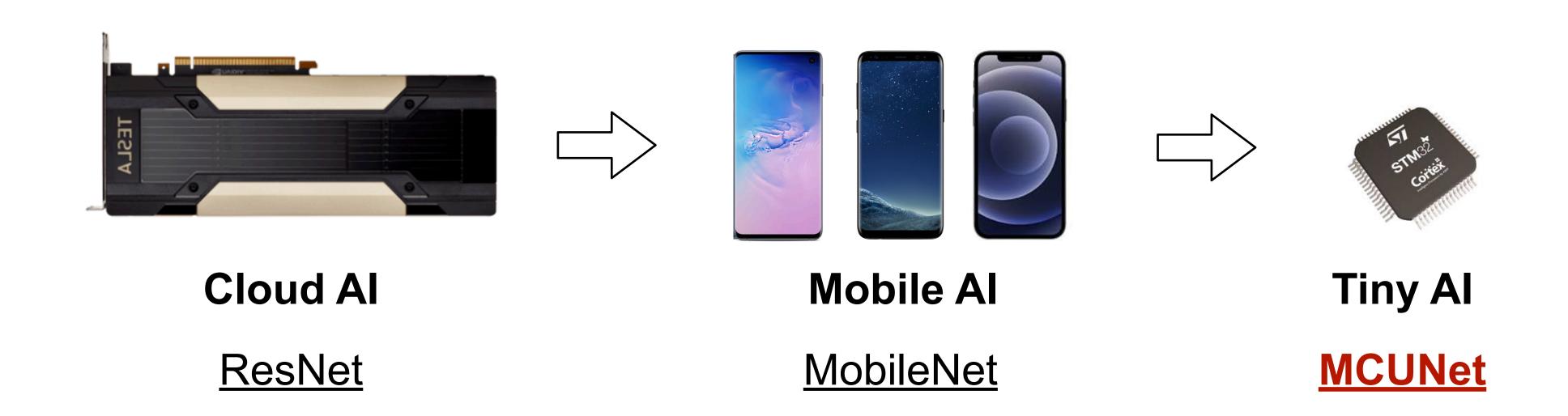
Our Results



Fine-Tuning vs. Ours



Summary: TinyML and Efficient Deep Learning



- Optimize the <u>Computation Efficiency</u>
 - Inference: MCUNet for IoT Devices [NeurIPS'20, spotlight]
 - Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS'20]
- Optimize the <u>Data Efficiency</u>
 - Differentiable Augmentation for Data-Efficient GAN Training [NeurlPS'20]

TinyML and Efficient Al

- github.com/mit-han-lab
- youtube.com/c/MITHANLab
- songhan.mit.edu

